Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
In the framework of the rapid development of nanoscience and nanotechnology, the domain of nanostructured materials is attracting more and more researchers, both academic and industrial. Synthesis methods are a major prerequisite for achievement in this rapidly evolving field. Nanostructured Materials: Selected Synthesis Methods, Properties and Applications presents several important recent advances in synthesis methods for nanostructured materials and processing of nano-objects into macroscopic samples, such as nanocrystalline ceramics. This book will not cover the whole spectrum of possible synthesis techniques, which would be limitless, but it presents especially interesting highlights in the domains of research of the editors. Subjects that are covered include the following: This book complements the previous volume in this series (P. Knauth, J. Schoonman, eds., Nanocrystalline Metals and Oxides: Selected Properties and Applications, Kluwer, Boston, 2002).
Nanostructured materials have at least one dimension in the nanometer range. They became a very active research area in solid state physics and chemistry in recent years with anticipated applications in various domains, including solar cells, electronics, batteries and sensors. Nanocrystalline metals and oxides are dense polycrystalline solids with a mean grain size below 100 nm. This book is intended to give an overview on selected properties and applications of nanocrystalline metals and oxides by leading experts in the field. The first three chapters provide a very complete theoretical treatment of thermodynamics and atom/ion transport for nanocrystalline materials. The following chapters are experts' views on the development of experimental characterization techniques for nanocrystalline solids with emphasis on electroceramic materials. Nanocrystalline Metals and Oxides is intended for a broad range of readers, foremost chemists, physicists and materials scientists. Theoretical physicists and chemists will certainly also profit from this book. The electroceramics and solid state ionics community are particularly addressed, given the main interests of the editors.
Nanocomposites have been receiving more and more attention given the improvement of synthesis techniques and the availability of powerful characterization techniques. The aim of the book is to introduce nanocomposite materials using a broad range of inorganic and organic solids. It also presents recent and not very common developments in especially spectroscopic characterization techniques, including M ssbauer, EXAFS, NMR. This should make the book attractive for a broad range of readers, including chemists and physicists.
Progress in the development of oxygen ion and mixed conductors is responsible for innovations in the fields of gas sensors, fuel cells, oxygen permeation membranes, oxygen pumps and electrolyzers. Commercialization has been impeded by materials stability and compatibility issues, high costs of fabrication and inadequate understanding of the interfacial phenomena controlling the operation of these devices. In this text we assemble a unique group of experts whose articles straddle, for the first time, all the key topical areas ranging from fundamentals relating to (a) defects, electrochemical, and interfacial processes, (b) catalysis, electrocatalysis and gas reforming, to design and fabrication including (c) advanced electroceramic processing methods, (d) materials selection and optimization, (e) and applications including scale up, commercialization and competitive technologies. This material was first presented at a NATO Advanced Study Institute held in Erice, Sicily, Italy during the period july 15-30, 1997. All the participants benefited from the integrated and synthetic approach taken to the subject matter with liberal use of examples and case studies. Many opportunities were made available for critical discussions of the key concepts and issues both within the formal sessions as well as in the cafes and restaurants which populate Erice. I join the co-organizers of the Advanced Study Institute, Professors J. Schoonman, I. Riess and M. Balkanski, in thanking NATO for providing support for the ASI. Thanks are also due to Dr.
Nanocomposites have been receiving more and more attention given the improvement of synthesis techniques and the availability of powerful characterization techniques. The aim of the book is to introduce nanocomposite materials using a broad range of inorganic and organic solids. Furthermore, it is intended to present recent and not very common developments in especially spectroscopic characterization techniques, including Mossbauer, EXAFS, NMR. This should make the book attractive for a broad range of readers, including chemists and physicists."
Nanostructured Materials: Selected Synthesis Methods, Properties and Applications presents several important recent advances in synthesis methods for nanostructured materials and processing of nano-objects into macroscopic samples, such as nanocrystalline ceramics. This book will not cover the whole spectrum of possible synthesis techniques, which would be limitless, but it presents especially interesting highlights in the domains of research of the editors. Subjects that are covered include the following: This book complements the previous volume in this series (P. Knauth, J. Schoonman, eds., Nanocrystalline Metals and Oxides: Selected Properties and Applications, Kluwer, Boston, 2002).
|
You may like...
|