Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Sustainable Energy, Towards a Zero-Carbon Economy Using Chemistry, Electrochemistry and Catalysis provides the reader with a clear outline of some of the strategies, particularly those based on various chemical approaches, that have been put forward with the aim of reducing greenhouse gas emissions in order to achieve "zero carbon" by 2050. The author describes the chemistry of some of the processes involved, paying particular attention to those that involve heterogeneous catalytic steps and electrolysis methods. In cases in which the technology is already established, details are given of the reactor systems used. He discusses novel developments in the areas of transport, the production of essential products using renewable energy and the uses of sustainable biomass.
Contemporary Catalysis: Fundamentals and Current Applications deals with the fundamentals and modern practical applications of catalysis. Topics addressed include historical development and the importance of heterogeneous catalysis in the modern world, surfaces and adsorption, the catalyst (preparation and characterization), the reactor (integral and differential reactors, etc.), and an introduction to spectroscopic and thermal characterization techniques. Building on this foundation, the book continues with chapters on important industrial processes, potential processes and separate chapters on syngas production, Fischer Tropsch synthesis, petroleum refining, environmental protection, and biomass conversion. Contemporary Catalysis is an essential resource for chemists, physical chemists, and chemical engineers, as well as graduate and post graduate students in catalysis and reaction engineering.
Heterogeneous catalysis plays a part in the production of more than 80% of all chemical products. It is therefore essential that all chemists and chemical engineers have an understanding of the fundamental principles as well as the applications of heterogeneous catalysts. This book introduces the subject, starting at a basic level, and includes sections on adsorption and surface science, catalytic kinetics, experimental methods for preparing and studying heterogeneous catalysts, as well as some aspects of the design of industrial catalytic reactors. It ends with a chapter that covers a range of examples of important catalytic processes. The book leads the student to carrying out a series of "tasks" based on searches of the internet and also on the use of web-based search tools such as Scopus or Web of Science. These tasks are generally based on the text; they can be used entirely for self-study but they can also be tailored to the requirements of a particular course by the instructor/lecturer giving the course. The author has had over 40 years of experience in catalytic research as well as in lecturing on the principles of catalysis. He was for more than 20 years the Editor of Catalysis Today.
Syngas generation by oxidative or steam reforming of hydrocarbons and oxygenates now attracts a lot of attention of researchers in the fields of heterogeneous catalysis and chemical engineering due to its tremendous importance for energy generation and synfuels production. This book reviews results of the long-term research of the international team of scientists aimed at development of efficient processes of syngas generation in structured catalytic reactors. Multiscale integrated optimisation approach is applied throughout of this work including design of nanocomposite active components stable to coking and sintering; developing heat-conducting monolithic substrates comprised of refractory alloys and cermets (honeycomb and microchannel structures, gauzes etc) and procedures of their loading with active components; design and manufacturing of several types of pilot-scale reactors (with the radial or the axial flow direction) equipped with unique liquid fuel evaporation and mixing units and internal heat exchangers. Extended tests of these reactors fed by fuels from C1 to gasoline, mineral and sunflower oil have been carried out with a broad variation of experimental parameters including stability tests up to 1000 h. Performance analysis has been made with a due regard for equilibrium restrictions on the operational parameters. Transient behaviour of the monolith reactor during start-up (ignition) of the methane partial oxidation to synthesis gas was studied and analysed via mathematical modelling based upon detailed elementary step mechanism. This provides required bases for theoretical optimisation of the catalyst bed configuration and process parameters.
|
You may like...
|