![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Fungal comparative genomics started in 2000 by the genome sequencing of several yeast species. Since then, over 30 fungal genome sequences have become available. This set represents a huge evolutionary divergence, but also contains closely related genomes. This volume describes how to use this set of genomes to trace events in genome evolution, to extract information about highly conserved and less conserved sequence elements, and to develop novel methods in genomics.
Yeast is one of the most studied laboratory organisms and represents one of the most central models to understand how any eukaryote cell works. On the other hand, yeast fermentations have for millennia provided us with a variety of biotech products, like wine, beer, vitamins, and recently also with pharmaceutically active heterologous products and biofuels. A central biochemical activity in the yeast cell is the metabolism of carbon compounds, providing energy for the whole cell, and precursors for any of the final fermentation products. A complex set of genes and regulatory pathways controls the metabolism of carbon compounds, from nutrient sensing, signal transduction, transcription regulation and post-transcriptional events. Recent advances in comparative genomics and development of post-genomic tools have provided further insights into the network of genes and enzymes, and molecular mechanisms which are responsible for a balanced metabolism of carbon compounds in the yeast cell, and which could be manipulated in the laboratory to increase the yield and quality of yeast biotech products. This book provides a dozen of most comprehensive reviews on the recent developments and achievements in the field of yeast carbon metabolism, from academic studies on gene expression to biotechnology relevant topics.
Latest Edition: Textbook of Structural Biology (2nd Edition)This is an important textbook for undergraduate and graduate students in structural biology, chemistry, biochemistry, biology and medicine. Written by a team of leading scientists in the field, it covers all the essential aspects of proteins, nucleic acids and lipids, including the rise and fall of proteins, membranes and gradients, the structural biology of cells, and evolution - the comparative structural biology. The focus is on interesting and relevant molecular structures as well as central biology.This comprehensive volume is richly illustrated with more than 200 color figures. So far, there has been a lack of comprehensive textbooks on structural biology that are up to date; this book is written to fill the gap. An accompanying CD contains high-resolution images that can be projected in a classroom.
Latest Edition: Textbook of Structural Biology (2nd Edition)This is an important textbook for undergraduate and graduate students in structural biology, chemistry, biochemistry, biology and medicine. Written by a team of leading scientists in the field, it covers all the essential aspects of proteins, nucleic acids and lipids, including the rise and fall of proteins, membranes and gradients, the structural biology of cells, and evolution - the comparative structural biology. The focus is on interesting and relevant molecular structures as well as central biology.This comprehensive volume is richly illustrated with more than 200 color figures. So far, there has been a lack of comprehensive textbooks on structural biology that are up to date; this book is written to fill the gap. An accompanying CD contains high-resolution images that can be projected in a classroom.
Yeast is one of the most studied laboratory organisms and represents one of the most central models to understand how any eukaryote cell works. On the other hand, yeast fermentations have for millennia provided us with a variety of biotech products, like wine, beer, vitamins, and recently also with pharmaceutically active heterologous products and biofuels. A central biochemical activity in the yeast cell is the metabolism of carbon compounds, providing energy for the whole cell, and precursors for any of the final fermentation products. A complex set of genes and regulatory pathways controls the metabolism of carbon compounds, from nutrient sensing, signal transduction, transcription regulation and post-transcriptional events. Recent advances in comparative genomics and development of post-genomic tools have provided further insights into the network of genes and enzymes, and molecular mechanisms which are responsible for a balanced metabolism of carbon compounds in the yeast cell, and which could be manipulated in the laboratory to increase the yield and quality of yeast biotech products. This book provides a dozen of most comprehensive reviews on the recent developments and achievements in the field of yeast carbon metabolism, from academic studies on gene expression to biotechnology relevant topics.
|
![]() ![]() You may like...
|