Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 42 matches in All Departments
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramer-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, information theory, or the foundations of statistics, to statisticians as well as to scientists interested in the mathematical foundations of complex systems.
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
Recent decades have witnessed the thriving development of new mathematical, computational and theoretical approaches, such as bioinformatics and neuroinformatics, to tackle fundamental issues in biology. These approaches focus no longer on individual units, such as nerve cells or genes, but rather on dynamic patterns of interactions between them. This volume explores the concept in full, featuring contributions from a global group of contributors, many of whom are pre-eminent in their field.
"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jurgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective."
This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical "Methods in Biology and Neurobiology" introduces and develops these mathematical structures and methods in a systematic manner. It studies: discrete structures and graph theory The biological applications range from molecular to evolutionary and ecological levels, for example: cellular reaction kinetics and gene regulation Written by one of the most experienced and successful authors of advanced mathematical textbooks, this book stands apart for the wide range of mathematical tools that are featured. It will be useful for graduate students and researchers in mathematics and physics that want a comprehensive overview and a working knowledge of the mathematical tools that can be applied in biology. It will also be useful for biologists with some mathematical background that want to learn more about the mathematical methods available to deal with biological structures and data."
This book offers an ideal introduction to the theory of partial differential equations. It focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. It also develops the main methods for obtaining estimates for solutions of elliptic equations: Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. It also explores connections between elliptic, parabolic, and hyperbolic equations as well as the connection with Brownian motion and semigroups. This second edition features a new chapter on reaction-diffusion equations and systems.
Recent decades have witnessed the thriving development of new mathematical, computational and theoretical approaches, such as bioinformatics and neuroinformatics, to tackle fundamental issues in biology. These approaches focus no longer on individual units, such as nerve cells or genes, but rather on dynamic patterns of interactions between them. This volume explores the concept in full, featuring contributions from a global group of contributors, many of whom are pre-eminent in their field.
This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmuller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation."
Breadth of scope is unique Author is a widely-known and successful textbook author Unlike many recent textbooks on chaotic systems that have superficial treatment, this book provides explanations of the deep underlying mathematical ideas No technical proofs, but an introduction to the whole field that is based on the specific analysis of carefully selected examples Includes a section on cellular automata
What is the title of this book intended to signify, what connotations is the adjective "Postmodern" meant to carry? A potential reader will surely pose this question. To answer it, I should describe what distinguishes the - proach to analysis presented here from what has by its protagonists been called "Modern Analysis." "Modern Analysis" as represented in the works of the Bourbaki group or in the textbooks by Jean Dieudonn e is characterized by its systematic and axiomatic treatment and by its drive towards a high level of abstraction. Given the tendency of many prior treatises on analysis to degenerate into a collection of rather unconnected tricks to solve special problems, this de?nitely represented a healthy achievement. In any case, for the development of a consistent and powerful mathematical theory, it seems to be necessary to concentrate solely on the internal problems and structures and to neglect the relations to other ?elds of scienti?c, even of mathematical study for a certain while. Almost complete isolation may be required to reach the level of intellectual elegance and perfection that only a good mathem- ical theory can acquire. However, once this level has been reached, it can be useful to open one's eyes again to the inspiration coming from concrete external problems."
Classical string theory is concerned with the propagation of classical 1-dimensional curves 'strings', and the theory has connections to the calculus of variations, minimal surfaces and harmonic maps. The quantization of string theory gives rise to problems in different areas, according to the method used. The representation theory of Lie, Kac-Moody and Virasoro algebras have been used for such quantization. In this lecture note the authors give an introduction to certain global analytic and probabilistic aspects of string theory. It is their intention to bring together, and make explicit the necessary mathematical tools. Researchers with an interest in string theory, in either mathematics or theoretical physics, will find this a stimulating volume.
The present book contains the lecture notes from a "Nachdiplomvorlesung," a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts."
Chemistry shapes and creates the disposition of the world's resources and provides novel substances for the welfare and hazard of our civilisation at an exponential rate. Can we model the evolution of chemical knowledge? This book not only provides a positive answer to the question, it provides the formal models and available data to model chemical knowledge as a complex dynamical system based on the mutual interaction of the social, semiotic and material systems of chemistry. These systems, which have evolved over the history, include the scientists and institutions supporting chemical knowledge (social system); theories, concepts and forms of communication (semiotic system) and the substances, reactions and technologies (material system) central for the chemical practice. These three systems, which have traditionally been mostly studied in isolation, are brought together in this book in a grand historical narrative, on the basis of comprehensive data sets and supplemented by appropriate tools for their formal analysis. We thereby develop a comprehensive picture of the evolution of chemistry, needed for better understanding the past, present and future of chemistry as a discipline. The interdisciplinary character of this book and its non-technical language make it an ideal complement to more traditional material in undergraduate and graduate courses in chemistry, history of science and digital humanities.
This textbook on the calculus of variations leads the reader from the basics to modern aspects of the theory. One-dimensional problems and the classical issues such as Euler-Lagrange equations are treated, as are Noether's theorem, Hamilton-Jacobi theory, and in particular geodesic lines, thereby developing some important geometric and topological aspects. The basic ideas of optimal control theory are also given. The second part of the book deals with multiple integrals. After a review of Lebesgue integration, Banach and Hilbert space theory and Sobolev spaces (with complete and detailed proofs), there is a treatment of the direct methods and the fundamental lower semicontinuity theorems. Subsequent chapters introduce the basic concepts of the modern calculus of variations, namely relaxation, Gamma convergence, bifurcation theory and minimax methods based on the Palais-Smale condition. The prerequisites are knowledge of the basic results from calculus of one and several variables. After having studied this book, the reader will be well equipped to read research papers in the calculus of variations.
This textbook on the calculus of variations leads the reader from the basics to modern aspects of the theory. One-dimensional problems and the classical issues such as Euler-Lagrange equations are treated, as are Noether's theorem, Hamilton-Jacobi theory, and in particular geodesic lines, thereby developing some important geometric and topological aspects. The basic ideas of optimal control theory are also given. The second part of the book deals with multiple integrals. After a review of Lebesgue integration, Banach and Hilbert space theory and Sobolev spaces (with complete and detailed proofs), there is a treatment of the direct methods and the fundamental lower semicontinuity theorems. Subsequent chapters introduce the basic concepts of the modern calculus of variations, namely relaxation, Gamma convergence, bifurcation theory and minimax methods based on the Palais-Smale condition. The prerequisites are knowledge of the basic results from calculus of one and several variables. After having studied this book, the reader will be well equipped to read research papers in the calculus of variations.
This book presents William Clifford's English translation of Bernhard Riemann's classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann's reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann's work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann's times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the Bishop-Gromov volume growth theorem which elucidates the geometric role of Ricci curvature. From the reviews:"This book provides a very readable introduction to Riemannian geometry and geometric analysis... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome." Mathematical Reviews "For readers familiar with the basics of differential geometry and some acquaintance with modern analysis, the book is reasonably self-contained. The book succeeds very well in laying out the foundations of modern Riemannian geometry and geometric analysis. It introduces a number of key techniques and provides a representative overview of the field." Monatshefte fur Mathematik
"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jurgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.
In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Dusseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature Ieads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second ordernonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more pro inent role in geometry. Let us Iist some of the most important ones: - harmonic maps between Riemannian and Kahlerian manifolds - minimal surfaces in Riemannian manifolds - Monge-Ampere equations on Kahler manifolds - Yang-Mills equations in vector bundles over manifolds. While the solution of these equations usually is nontrivial, it can Iead to very signifi cant results in geometry, as solutions provide maps, submanifolds, metrics, or connections which are distinguished by geometric properties in a given context. All these equations are elliptic, but often parabolic equations are used as an auxiliary tool to solve the elliptic ones."
Mit ihrer Vielzahl von erstaunlichen Phanomenen und ihrer komplexen Verwobenheit unterschiedlichster Skalen ist die Biologie die reichhaltigste aller Naturwissenschaften. Sie hat in den letzten Jahrzehnten die eindrucksvollsten Fortschritte erzielt. Aber Biologie und Mathematik sind sich traditionell fremd. Dabei kann die Mathematik die Biologie in vielfaltiger Weise bereichern und unterstutzen, von der logischen Klarung der Grundbegriffe uber die formale Modellierung biologischer Strukturen und Prozesse bis zur systematischen Analyse riesiger Datenmengen. Fur die Mathematik gibt es nicht nur eine Menge neuer Anwendungsmoeglichkeiten, sondern auch grossartige Chancen und Herausforderungen fur die Entwicklung neuer Theorien und Methoden. Souveran, kritisch und humorvoll entfaltet Jurgen Jost in diesem Buch das Panorama der modernen Biologie und lotet die Moeglichkeiten fur die Mathematik aus. Dabei tritt fast das gesamte Spektrum der Teilgebiete der Mathematik auf.
Was hat ein Gelehrter des 17.Jahrhunderts noch fur die heutigen Naturwissenschaften zu sagen? Eine ganze Menge, so zeigt sich in diesem Buch. Gottfried Wilhelm Leibniz (1646-1716) war ein Universalgenie, und ihm gelangen bahnbrechende Leistungen in fast allen Gebieten der Wissenschaft, insbesondere in der Philosophie (Relativitat von Raum und Zeit), der Mathematik (Infinitesimalrechnung, Determinantentheorie, binares Zahlsystem, Konstruktion einer Rechenmaschine), der Logik (Pradikaten- und Modallogik, Konzept der moeglichen Welten), der Physik (Energieerhaltung und Aktionsprinzip), der Erd- und Menschheitsgeschichte, der Rechtswissenschaft und der Theologie. Diese Leistungen waren aber nicht isoliert, sondern eingebettet in ein umfassendes System, das auf dem Satz vom Widerspruch, dem Satz vom zureichenden Grunde und dem Kontinuitatsprinzip beruhte. Erst durch das Verstandnis dieses Systems erschliessen sich die Einheit und die Spannweite seines Denkens. Jurgen Jost, der wie nur wenige andere die verschiedenen Wissenschaften uberblickt, konfrontiert dieses leibnizsche System mit den Ansatzen, Denkweisen und Ergebnissen der heutigen Naturwissenschaften, insbesondere der Quantenphysik, der Relativitatstheorie und Kosmologie, der modernen Logik, der Evolutionsbiologie und der Hirnforschung. Es zeigt sich, dass das leibnizsche System in vieler Hinsicht noch aktuell ist und sich bewahrt, aber auch in manchen Positionen revidiert werden muss. Hieraus ergeben sich neue Einsichten sowohl in das leibnizsche System als auch in die heutigen Naturwissenschaften.
Das vorliegende Lehrbuch bietet eine moderne Einfuhrung in die Differenzialgeometrie - etwa im Umfang einer einsemestrigen Vorlesung. Zunachst behandelt es die Geometrie von Flachen im Raum. Viele Beispiele schulen Leser in geometrischer Anschauung, deren wichtigste Klasse die Minimalflachen bilden. Zu ihrem Studium entwickeln die Autoren analytische Methoden und loesen in diesem Zusammenhang das Plateausche Problem. Es besteht darin, eine Minimalflache mit vorgegebener Berandung zu finden. Als Beispiel einer globalen Aussage der Differenzialgeometrie beweisen sie den Bernsteinschen Satz. Weitere Kapitel behandeln die innere Geometrie von Flachen einschliesslich des Satzes von Gauss-Bonnet, und stellen die hyperbolische Geometrie ausfuhrlich dar. Die Autoren verknupfen geometrische Konstruktionen und analytische Methoden und folgen damit einem zentralen Trend der modernen mathematischen Forschung. Verschiedene geistesgeschichtliche Bemerkungen runden den Text ab. Die Neuauflage wurde uberarbeitet und aktualisiert. Hinweise und Errata auf Webseite des Autors: https://myweb.rz.uni-augsburg.de/~eschenbu/ |
You may like...
|