Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
From the review: "The present book has as its aim to resolve a discrepancy in the textbook literature and ... to provide a comprehensive introduction to algebraic number theory which is largely based on the modern, unifying conception of (one-dimensional) arithmetic algebraic geometry. ... Despite this exacting program, the book remains an introduction to algebraic number theory for the beginner... The author discusses the classical concepts from the viewpoint of Arakelov theory.... The treatment of class field theory is ... particularly rich in illustrating complements, hints for further study, and concrete examples.... The concluding chapter VII on zeta-functions and L-series is another outstanding advantage of the present textbook.... The book is, without any doubt, the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available." W. Kleinert in: Zentralblatt für Mathematik, 1992
This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
The present manuscript is an improved edition of a text that first appeared under the same title in Bonner Mathematische Schriften, no.26, and originated from a series of lectures given by the author in 1965/66 in Wolfgang Krull's seminar in Bonn. Its main goal is to provide the reader, acquainted with the basics of algebraic number theory, a quick and immediate access to class field theory. This script consists of three parts, the first of which discusses the cohomology of finite groups. The second part discusses local class field theory, and the third part concerns the class field theory of finite algebraic number fields.
This introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.
This is a book about numbers - all kinds of numbers, from integers to p-adics, from rationals to octonions, from reals to infinitesimals. Who first used the standard notation for Â? Why was Hamilton obsessed with quaternions? What was the prospect for "quaternionic analysis" in the 19th century? This is the story about one of the major threads of mathematics over thousands of years. It is a story that will give the reader both a glimpse of the mystery surrounding imaginary numbers in the 17th century and also a view of some major developments in the 20th.
Der Klassiker zum Thema bietet Lesern, die mit den Grundlagen der algebraischen Zahlentheorie vertraut sind, einen raschen Zugang zur Klassenkoerpertheorie. Die Neuauflage ist eine verbesserte Version des 1969 in der Reihe B. I.-Hochschulskripten (Bibliographisches Institut Mannheim) erschienenen gleichnamigen Bandes. Das Werk besteht aus drei Teilen: Im ersten wird die Kohomologie der endlichen Gruppen behandelt, im zweiten die lokale Klassenkoerpertheorie, der dritte Teil widmet sich der Klassenkoerpertheorie der endlichen algebraischen Zahlkoerper.
Die Schwierigkeit Mathematik zu lernen und zu lehren ist jedem bekannt, der einmal mit diesem Fach in Beruhrung gekommen ist. Begriffe wie "reelle oder komplexe Zahlen, Pi" sind zwar jedem gelaufig, aber nur wenige wissen, was sich wirklich dahinter verbirgt. Die Autoren dieses Bandes geben jedem, der mehr wissen will als nur die Hulle der Begriffe, eine meisterhafte Einfuhrung in die Magie der Mathematik und schlagen einzigartige Brucken fur Studenten. Die Rezensenten der ersten beiden Auflagen uberschlugen sich."
Algebraische Zahlentheorie: eine der traditionsreichsten und aktuellsten Grunddisziplinen der Mathematik. Das vorliegende Buch schildert ausf hrlich Grundlagen und H hepunkte. Konkret, modern und in vielen Teilen neu. Neu: Theorie der Ordnungen. Plus: die geometrische Neubegr ndung der Theorie der algebraischen Zahlk rper durch die "Riemann-Roch-Theorie" vom "Arakelovschen Standpunkt," die bis hin zum "Grothendieck-Riemann-Roch-Theorem" f hrt.
|
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
|