0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Large-Scale Machine Learning in the Earth Sciences (Paperback): Ashok N. Srivastava, Ramakrishna Nemani, Karsten Steinhaeuser Large-Scale Machine Learning in the Earth Sciences (Paperback)
Ashok N. Srivastava, Ramakrishna Nemani, Karsten Steinhaeuser
R1,307 R1,129 Discovery Miles 11 290 Save R178 (14%) Ships in 9 - 15 working days

From the Foreword: "While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest...I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences." --Vipin Kumar, University of Minnesota Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book.

Large-Scale Machine Learning in the Earth Sciences (Hardcover): Ashok N. Srivastava, Ramakrishna Nemani, Karsten Steinhaeuser Large-Scale Machine Learning in the Earth Sciences (Hardcover)
Ashok N. Srivastava, Ramakrishna Nemani, Karsten Steinhaeuser
R3,470 Discovery Miles 34 700 Ships in 12 - 17 working days

From the Foreword: "While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest...I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences." --Vipin Kumar, University of Minnesota Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Gloria
Sam Smith CD R187 R177 Discovery Miles 1 770
PU Auto Pop-Up Card Holder
R199 R159 Discovery Miles 1 590
Vital BabyŽ NOURISH™ Power™ Suction Bowl…
R159 Discovery Miles 1 590
Soccer Waterbottle [Black]
R99 R70 Discovery Miles 700
Loewe Agua De Loewe Ella Eau De Toilette…
R1,911 Discovery Miles 19 110
Multi Colour Jungle Stripe Neckerchief
R119 Discovery Miles 1 190
Air Fryer - Herman's Top 100 Recipes
Herman Lensing Paperback R350 R235 Discovery Miles 2 350
The Papery A5 MOM 2025 Diary - Giraffe
R349 R300 Discovery Miles 3 000
Leisure Quip Stainless Steel Tumbler…
R39 R21 Discovery Miles 210
Christmas Nativity Set Of 8
R1,299 R919 Discovery Miles 9 190

 

Partners