![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This accessible introduction to the theory of stochastic processes emphasizes Levy processes and Markov processes. It gives a thorough treatment of the decomposition of paths of processes with independent increments (the Levy-Ito decomposition). It also contains a detailed treatment of time-homogeneous Markov processes from the viewpoint of probability measures on path space. In addition, 70 exercises and their complete solutions are included."
This accessible introduction to the theory of stochastic processes emphasizes Levy processes and Markov processes. It gives a thorough treatment of the decomposition of paths of processes with independent increments (the Levy-Ito decomposition). It also contains a detailed treatment of time-homogeneous Markov processes from the viewpoint of probability measures on path space. In addition, 70 exercises and their complete solutions are included."
Over the past 10-15 years, we have seen a revival of general Levy ' processes theory as well as a burst of new applications. In the past, Brownian motion or the Poisson process have been considered as appropriate models for most applications. Nowadays, the need for more realistic modelling of irregular behaviour of phen- ena in nature and society like jumps, bursts, and extremeshas led to a renaissance of the theory of general Levy ' processes. Theoretical and applied researchers in elds asdiverseas quantumtheory,statistical physics,meteorology,seismology,statistics, insurance, nance, and telecommunication have realised the enormous exibility of Lev ' y models in modelling jumps, tails, dependence and sample path behaviour. L' evy processes or Levy ' driven processes feature slow or rapid structural breaks, extremal behaviour, clustering, and clumping of points. Toolsandtechniquesfromrelatedbut disctinct mathematical elds, such as point processes, stochastic integration,probability theory in abstract spaces, and differ- tial geometry, have contributed to a better understanding of Le 'vy jump processes. As in many other elds, the enormous power of modern computers has also changed the view of Levy ' processes. Simulation methods for paths of Levy ' p- cesses and realisations of their functionals have been developed. Monte Carlo simulation makes it possible to determine the distribution of functionals of sample paths of Levy ' processes to a high level of accuracy.
This book deals with topics in the area of Levy processes and infinitely divisible distributions such as Ornstein-Uhlenbeck type processes, selfsimilar additive processes and multivariate subordination. These topics are developed around a decreasing chain of classes of distributions Lm, m = 0,1,..., , from the class L0 of selfdecomposable distributions to the class L generated by stable distributions through convolution and convergence. The book is divided into five chapters. Chapter 1 studies basic properties of Lm classes needed for the subsequent chapters. Chapter 2 introduces Ornstein-Uhlenbeck type processes generated by a Levy process through stochastic integrals based on Levy processes. Necessary and sufficient conditions are given for a generating Levy process so that the OU type process has a limit distribution of Lm class. Chapter 3 establishes the correspondence between selfsimilar additive processes and selfdecomposable distributions and makes a close inspection of the Lamperti transformation, which transforms selfsimilar additive processes and stationary type OU processes to each other. Chapter 4 studies multivariate subordination of a cone-parameter Levy process by a cone-valued Levy process. Finally, Chapter 5 studies strictly stable and Lm properties inherited by the subordinated process in multivariate subordination. In this revised edition, new material is included on advances in these topics. It is rewritten as self-contained as possible. Theorems, lemmas, propositions, examples and remarks were reorganized; some were deleted and others were newly added. The historical notes at the end of each chapter were enlarged. This book is addressed to graduate students and researchers in probability and mathematical statistics who are interested in learning more on Levy processes and infinitely divisible distributions.
Levy processes are rich mathematical objects and constitute perhaps the most basic class of stochastic processes with a continuous time parameter. This book is intended to provide the reader with comprehensive basic knowledge of Levy processes, and at the same time serve as an introduction to stochastic processes in general. No specialist knowledge is assumed and proofs are given in detail. Systematic study is made of stable and semi-stable processes, and the author gives special emphasis to the correspondence between Levy processes and infinitely divisible distributions. All serious students of random phenomena will find that this book has much to offer. Now in paperback, this corrected edition contains a brand new supplement discussing relevant developments in the area since the book's initial publication."
Lévy processes are rich mathematical objects and constitute perhaps the most basic class of stochastic processes with a continuous time parameter. This book provides the reader with comprehensive basic knowledge of Lévy processes, and at the same time introduces stochastic processes in general. No specialist knowledge is assumed and proofs and exercises are given in detail. The author systematically studies stable and semi-stable processes and emphasizes the correspondence between Lévy processes and infinitely divisible distributions. All serious students of random phenomena will benefit from this volume.
|
![]() ![]() You may like...
Rogue One: A Star Wars Story - Blu-Ray…
Felicity Jones, Diego Luna, …
Blu-ray disc
R382
Discovery Miles 3 820
|