0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

New Horizons of Applied Scanning Electron Microscopy (Hardcover, 2010 ed.): Kenichi Shimizu, Tomoaki Mitani New Horizons of Applied Scanning Electron Microscopy (Hardcover, 2010 ed.)
Kenichi Shimizu, Tomoaki Mitani
R2,936 Discovery Miles 29 360 Ships in 10 - 15 working days

In modern scanning electron microscopy, sample surface preparation is of key importance, just as it is in transmission electron microscopy. With the procedures for sample surface preparation provided in the present book, the enormous potential of advanced scanning electron microscopes can be realized fully. This will take the reader to an entirely new level of scanning electron microscopy and finely-detailed images never seen before. Written for: Scientists, practitioners, academic libraries, graduate students

New Horizons of Applied Scanning Electron Microscopy (Paperback, 2010 ed.): Kenichi Shimizu, Tomoaki Mitani New Horizons of Applied Scanning Electron Microscopy (Paperback, 2010 ed.)
Kenichi Shimizu, Tomoaki Mitani
R2,897 Discovery Miles 28 970 Ships in 10 - 15 working days

In modern scanning electron microscopy, sample surface preparation is of key importance, just as it is in transmission electron microscopy. With the procedures for sample surface preparation provided in the present book, the enormous potential of advanced scanning electron microscopes can be realized fully. This will take the reader to an entirely new level of scanning electron microscopy and finely-detailed images never seen before.

Bootstrapping Stationary ARMA-GARCH Models 2010 (Paperback, 2010 ed.): Kenichi Shimizu Bootstrapping Stationary ARMA-GARCH Models 2010 (Paperback, 2010 ed.)
Kenichi Shimizu
R1,507 Discovery Miles 15 070 Ships in 10 - 15 working days

Im Jahre 1979 hat Bradley Efron mit seiner Arbeit Bootstrap Methods: Another Look at the Jackknife das Tor zu einem in den vergangenen 30 Jahren intensiv bearbeiteten Forschungsgebiet aufgestossen. Die simulationsbasierte Methode des Bootstraps hat sich in den verschiedensten Bereichen als ein ausserordentlich - ?zientes Werkzeug zur Approximation der stochastischen Fluktuation eines Sch- zers um die zu schatzende Grosse erwiesen. Prazise Kenntnis dieser stochastischen Fluktuation ist zum Beispiel notwendig, um Kon?denzbereiche fur Schatzer an- geben, die die unbekannte interessierende Grosse mit einer vorgegebenen Wa- scheinlichkeit von, sagen wir, 95 oder 99% enthalten. In vielen Fallen und bei korrekter Anwendung ist das Bootstrapverfahren dabei der konkurrierenden und auf der Approximation durch eine Normalverteilung basierenden Methode ub- legen. Die Anzahl der Publikationen im Bereich des Bootstraps ist seit 1979 in einem atemberaubenden Tempo angestiegen. Die wesentliche und im Grunde e- fache Idee des Bootstraps ist die Erzeugung vieler (Pseudo-) Datensatze, die von ihrer wesentlichen stochastischen Struktur dem Ausgangsdatensatz moglichst a- lich sind. Die aktuellen Forschungsinteressen im Umfeld des Bootstraps bewegen sich zu einem grossen Teil im Bereich der stochastischen Prozesse. Hier stellt sich die zusatzliche Herausforderung, bei der Erzeugung die Abhangigkeitsstruktur der Ausgangsdaten adaquat zu imitieren. Dabei ist eine prazise Analyse der zugrunde liegenden Situation notwendig, um beurteilen zu konnen, welche Abhangigkei- aspekte fur das Verhalten der Schatzer wesentlich sind und welche nicht, um a- reichend komplexe, aber eben auch moglichst einfache Resamplingvorschlage fur die Erzeugung der Bootstrapdaten entwickeln zu konnen."

Bayesian Approaches to Shrinkage and Sparse Estimation (Paperback): Dimitris Korobilis, Kenichi Shimizu Bayesian Approaches to Shrinkage and Sparse Estimation (Paperback)
Dimitris Korobilis, Kenichi Shimizu
R2,120 Discovery Miles 21 200 Ships in 10 - 15 working days

Bayesian Approaches to Shrinkage and Sparse Estimation introduces the reader to the world of Bayesian model determination by surveying modern shrinkage and variable selection algorithms and methodologies. Bayesian inference is a natural probabilistic framework for quantifying uncertainty and learning about model parameters, and this feature is particularly important for inference in modern models of high dimensions and increased complexity. The authors begin with a linear regression setting in order to introduce various classes of priors that lead to shrinkage/sparse estimators of comparable value to popular penalized likelihood estimators (e.g. ridge, LASSO). They examine various methods of exact and approximate inference, and discuss their pros and cons. Finally, they explore how priors developed for the simple regression setting can be extended in a straightforward way to various classes of interesting econometric models. In particular, the following case-studies are considered that demonstrate application of Bayesian shrinkage and variable selection strategies to popular econometric contexts: i) vector autoregressive models; ii) factor models; iii) time-varying parameter regressions; iv) confounder selection in treatment effects models; and v) quantile regression models. A MATLAB package and an accompanying technical manual allows the reader to replicate many of the algorithms described in this review.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Ultimate Cookies & Cupcakes For Kids
Hinkler Pty Ltd Kit R299 R234 Discovery Miles 2 340
Russell Hobbs Toaster (2 Slice…
R707 Discovery Miles 7 070
By Way Of Deception
Amir Tsarfati, Steve Yohn Paperback  (1)
R250 R211 Discovery Miles 2 110
Canon 445 Original Ink Cartridge (Black)
R700 R330 Discovery Miles 3 300
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Wonder Plant Food Stix - Premium Plant…
R49 R41 Discovery Miles 410
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Casals 22 Piece Steel Hand Tool Set…
 (1)
R399 Discovery Miles 3 990
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Gloria
Sam Smith CD R187 R167 Discovery Miles 1 670

 

Partners