Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The quality of primary and secondary school mathematics teaching is generally agreed to depend crucially on the subject-related knowledge of the teacher. However, there is increasing recognition that effective teaching calls for distinctive forms of subject-related knowledge and thinking. Thus, established ways of conceptualizing, developing and assessing mathematical knowledge for teaching may be less than adequate. These are important issues for policy and practice because of longstanding difficulties in recruiting teachers who are confident and conventionally well-qualified in mathematics, and because of rising concern that teaching of the subject has not adapted sufficiently. The issues to be examined in Mathematical Knowledge in Teaching are of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing more effective approaches to characterizing, assessing and developing mathematical knowledge for teaching.
A significant driver of recent growth in the use of mathematics in the professions has been the support brought by new technologies. Not only has this facilitated the application of established methods of mathematical and statistical analysis but it has stimulated the development of innovative approaches. These changes have produced a marked evolution in the professional practice of mathematics, an evolution which has not yet provoked a corresponding adaptation in mathematical education, particularly at school level. In particular, although calculators -- first arithmetic and scientific, then graphic, now symbolic -- have been found well suited in many respects to the working conditions of pupils and teachers, and have even achieved a degree of official recognition, the integration of new technologies into the mathematical practice of schools remains marginal. It is this situation which has motivated the research and development work to be reported in this volume. The appearance of ever more powerful and portable computational tools has certainly given rise to continuing research and development activity at all levels of mathematical education. Amongst pioneers, such innovation has often been seen as an opportunity to renew the teaching and learning of mathematics. Equally, however, the institutionalization of computational tools within educational practice has proceeded at a strikingly slow pace over many years.
The quality of primary and secondary school mathematics teaching is generally agreed to depend crucially on the subject-related knowledge of the teacher. However, there is increasing recognition that effective teaching calls for distinctive forms of subject-related knowledge and thinking. Thus, established ways of conceptualizing, developing and assessing mathematical knowledge for teaching may be less than adequate. These are important issues for policy and practice because of longstanding difficulties in recruiting teachers who are confident and conventionally well-qualified in mathematics, and because of rising concern that teaching of the subject has not adapted sufficiently. The issues to be examined in Mathematical Knowledge in Teaching are of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing more effective approaches to characterizing, assessing and developing mathematical knowledge for teaching.
The NATO Advanced Research Workshop on Mathematics Education and Technology was held in Villard-de-Lans, France, between May 6 and 11, 1993. Organised on the initiative of the BaCoMET (Basic Components of Mathematics Education for Teachers) group (Christiansen, Howson and Otte 1986; Bishop, Mellin-Olsen and van Dormolen 1991), the workshop formed part of a larger NATO programme on Advanced Educational Technology. Some workshop members had already participated in earlier events in this series and were able to contribute insights from them: similarly some members were to take part in later events. The problematic for the workshop drew attention to important speculative developments in the applications of advanced information technology in mathematics education over the last decade, notably intelligent tutoring, geometric construction, symbolic algebra and statistical analysis. Over the same period, more elementary forms of information technology had started to have a significant influence on teaching approaches and curriculum content: notably arithmetic and graphic calculators; standard computer tools, such as spreadsheets and databases; and computer-assisted learning packages and computer microworlds specially designed for educational purposes.
A significant driver of recent growth in the use of mathematics in the professions has been the support brought by new technologies. Not only has this facilitated the application of established methods of mathematical and statistical analysis but it has stimulated the development of innovative approaches. These changes have produced a marked evolution in the professional practice of mathematics, an evolution which has not yet provoked a corresponding adaptation in mathematical education, particularly at school level. In particular, although calculators -- first arithmetic and scientific, then graphic, now symbolic -- have been found well suited in many respects to the working conditions of pupils and teachers, and have even achieved a degree of official recognition, the integration of new technologies into the mathematical practice of schools remains marginal. It is this situation which has motivated the research and development work to be reported in this volume. The appearance of ever more powerful and portable computational tools has certainly given rise to continuing research and development activity at all levels of mathematical education. Amongst pioneers, such innovation has often been seen as an opportunity to renew the teaching and learning of mathematics. Equally, however, the institutionalization of computational tools within educational practice has proceeded at a strikingly slow pace over many years.
Developing Research in Mathematics Education is the first book in the series New Perspectives on Research in Mathematics Education, to be produced in association with the prestigious European Society for Research in Mathematics Education. This inaugural volume sets out broad advances in research in mathematics education which have accumulated over the last 20 years through the sustained exchange of ideas and collaboration between researchers in the field. An impressive range of contributors provide specifically European and complementary global perspectives on major areas of research in the field on topics that include: the content domains of arithmetic, geometry, algebra, statistics, and probability; the mathematical processes of proving and modeling; teaching and learning at specific age levels from early years to university; teacher education, teaching and classroom practices; special aspects of teaching and learning mathematics such as creativity, affect, diversity, technology and history; theoretical perspectives and comparative approaches in mathematics education research. This book is a fascinating compendium of state-of-the-art knowledge for all mathematics education researchers, graduate students, teacher educators and curriculum developers worldwide.
Developing Research in Mathematics Education is the first book in the series New Perspectives on Research in Mathematics Education, to be produced in association with the prestigious European Society for Research in Mathematics Education. This inaugural volume sets out broad advances in research in mathematics education which have accumulated over the last 20 years through the sustained exchange of ideas and collaboration between researchers in the field. An impressive range of contributors provide specifically European and complementary global perspectives on major areas of research in the field on topics that include: the content domains of arithmetic, geometry, algebra, statistics, and probability; the mathematical processes of proving and modeling; teaching and learning at specific age levels from early years to university; teacher education, teaching and classroom practices; special aspects of teaching and learning mathematics such as creativity, affect, diversity, technology and history; theoretical perspectives and comparative approaches in mathematics education research. This book is a fascinating compendium of state-of-the-art knowledge for all mathematics education researchers, graduate students, teacher educators and curriculum developers worldwide.
|
You may like...
|