Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. Table of Contents: Introduction / Overview: Recognition of Specific Objects / Local Features: Detection and Description / Matching Local Features / Geometric Verification of Matched Features / Example Systems: Specific-Object Recognition / Overview: Recognition of Generic Object Categories / Representations for Object Categories / Generic Object Detection: Finding and Scoring Candidates / Learning Generic Object Category Models / Example Systems: Generic Object Recognition / Other Considerations and Current Challenges / Conclusions
Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. Crowdsourcing in Computer Vision describes the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. It begins by discussing data collection on both classic vision tasks, such as object recognition, and recent vision tasks, such as visual story-telling. It then summarizes key design decisions for creating effective data collection interfaces and workflows, and presents strategies for intelligently selecting the most important data instances to annotate. It concludes with some thoughts on the future of crowdsourcing in computer vision. Crowdsourcing in Computer Vision provides an overview of how crowdsourcing has been used in computer vision, enabling a computer vision researcher who has previously not collected non-expert data to devise a data collection strategy. It will also be of help to researchers who focus broadly on crowdsourcing to examine how the latter has been applied in computer vision, and to improve the methods that can be employed to ensure the quality and expedience of data collection.
|
You may like...
A Shakespeare Story: Shakespeare Stories…
Andrew Matthews
Paperback
|