![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications have made this book a classic text in electrical and electronic engineering. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of undergraduate students. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microelectronics, lasers, nanotechnology, and several other topics that impinge on modern life.
Photorefractive materials combine photoconductive and electro-optic properties: light affects their electrical conductivity; their optical properties (refractive index, etc.) are affected by applied electric fields. The aim of this book is to cover the vast range of phenomena occurring in Photorefractive Materials. For Physicists it is part of the fashionable subject of Nonlinear Optics. Engineers tend to place it as part of optoelectronics promising a variety of new devices. This book summarizes the results of 28 years of research in a manner that would appeal both to the beginner (a graduate student who has just entered the field) and to the expert (who might have done research on some aspect of the subject for a decade or more). It is in three parts. Part I serves as an introduction with emphasis on physical principles and simple mathematical models. Part II is a comprehensive account of all the major advances. Its main merit is the organization of the material accompanied by a detailed list of references. Part III is concerned with the enormous range of potential applications.
An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications have made this book a classic text in electrical and electronic engineering. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of undergraduate students. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microelectronics, lasers, nanotechnology, and several other topics that impinge on modern life.
|
You may like...
Illinois Register, Vol. 13: Rules of…
Illinois Office of Secretary of State
Paperback
R569
Discovery Miles 5 690
Surveillance Technologies and Early…
Ali Serhan Koyuncugil, Nermin Ozgulbas
Hardcover
R4,583
Discovery Miles 45 830
|