Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book discusses in depth many of the key problems in non-equilibrium physics. Besides the standard subjects (Boltzmann and Master equations, linear response) it includes several new important subjects as well. The origin of macroscopic irreversible (dissipative) behavior receives an extended attention and is illustrated in the framework of solvable classical models of open systems (Chapter 3). The scaling relationship between the kinetic and hydrodynamical levels is described in Chapter 9. The QED of charged non-relativistic particles and its restriction to the states without photons to order 1/c(2) leading to the current-current magnetic interaction is discussed in some depth in Chapters 14 and 15. Bose-Einstein condensation in real time within the frame of rate equations, as well as soliton-like solutions of the non-linear Gross-Pitaevskii equation are discussed in Chapter 22. The presentation also includes the latest developments - quantum kinetics - related to modern ultrafast spectroscopy (Chapters 23-30).This second edition was improved, restructured, and enriched with new results from the recent papers of the author. Chapter 3 was largely extended and Chapters 14 and 15 are completely new. Chapter 22 has a new Section. Several new useful figures were added throughout the book as well.
Designed to sit alongside more conventional established condensed matter physics textbooks, this compact volume offers a concise presentation of the principles of solid state theory, ideal for advanced students and researchers requiring an overview or a quick refresher on a specific topic. The book starts from the one-electron theory of solid state physics, moving through electron-electron interaction and many-body approximation schemes, to lattice oscillations and their interactions with electrons. Subsequent chapters discuss transport theory and optical properties, phase transitions and some properties of low-dimensional semiconductors. Throughout the text, mathematical proofs are often only sketched, and the final chapter of the book reviews some of the key concepts and formulae used in theoretical physics. Aimed primarily at graduate and advanced undergraduate students taking courses on condensed matter theory, the book serves as a study guide to reinforce concepts learned through conventional solid state texts. Researchers and lecturers will also find it a useful resource as a concise set of notes on fundamental topics.
Designed to sit alongside more conventional established condensed matter physics textbooks, this compact volume offers a concise presentation of the principles of solid state theory, ideal for advanced students and researchers requiring an overview or a quick refresher on a specific topic. The book starts from the one-electron theory of solid state physics, moving through electron-electron interaction and many-body approximation schemes, to lattice oscillations and their interactions with electrons. Subsequent chapters discuss transport theory and optical properties, phase transitions and some properties of low-dimensional semiconductors. Throughout the text, mathematical proofs are often only sketched, and the final chapter of the book reviews some of the key concepts and formulae used in theoretical physics. Aimed primarily at graduate and advanced undergraduate students taking courses on condensed matter theory, the book serves as a study guide to reinforce concepts learned through conventional solid state texts. Researchers and lecturers will also find it a useful resource as a concise set of notes on fundamental topics.
|
You may like...
|