Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The book covers different aspects of the chemistry and physics of molecular materials, including organic synthesis of specific organic donors and ligands, organic metals and superconductors, molecule-based magnets, multiproperty materials and organic-inorganic hybrids. The 17 chapters are written by some of the most authoritative authors in their field. The two last chapters are devoted to molecular electronics and devices, in particular the achievements and potential for applications. An excellent work for all students and researchers in organic conductors, superconductors and molecule based magnets.
For several years, the two parallel worlds of Molecular Conductors in one hand and Molecular Magnetism in the other have grown side by side, the former essentially based on radical organic molecules, the latter essentially based on the high spin properties of metal complexes. Over the last few years however, organometallic derivatives have started to play an increasingly important role in both worlds, and have in many ways contributed to open several passages between these two worlds. This volume recognizes this important emerging evolution of both research areas. It is not intended to give a comprehensive view of all possible organometallic materials, and polymers for example were not considered here. Rather we present a selection of the most recent research topics where organometallic derivatives were shown to play a crucial role in the setting of conducting and/or magnetic properties in crystalline materials. First, the role of organometallic anions in tet- thiafulvalenium-based molecular conductors is highlighted by Schlueter, while Kubo and Kato describe very recent ortho-metalated chelating ligands appended to the TTF core and their conducting salts. The combination of conducting and magnetic properties and the search for p-d interactions are analyzed in two comp- mentary contributions by Myazaki and Ouahab, while Valade focuses on the only class of metal bis(dithiolene) complexes to give rise to superconductive molecular materials, in association with organic as well as organometallic cations.
This book provides a comprehensive overview on multifunctional molecular materials that involve coexistence or interplay or synergy between multiple physical properties focusing on electrical conductivity, magnetism, single-molecule magnets behavior, chirality, spin crossover, and luminescence. The book s coverage ranges from transition metals and lanthanide coordination complexes to genuine organic materials. The book also discusses some potentialities of applications of these materials in molecule-based devices.
For several years, the two parallel worlds of Molecular Conductors in one hand and Molecular Magnetism in the other have grown side by side, the former essentially based on radical organic molecules, the latter essentially based on the high spin properties of metal complexes. Over the last few years however, organometallic derivatives have started to play an increasingly important role in both worlds, and have in many ways contributed to open several passages between these two worlds. This volume recognizes this important emerging evolution of both research areas. It is not intended to give a comprehensive view of all possible organometallic materials, and polymers for example were not considered here. Rather we present a selection of the most recent research topics where organometallic derivatives were shown to play a crucial role in the setting of conducting and/or magnetic properties in crystalline materials. First, the role of organometallic anions in tet- thiafulvalenium-based molecular conductors is highlighted by Schlueter, while Kubo and Kato describe very recent ortho-metalated chelating ligands appended to the TTF core and their conducting salts. The combination of conducting and magnetic properties and the search for p-d interactions are analyzed in two comp- mentary contributions by Myazaki and Ouahab, while Valade focuses on the only class of metal bis(dithiolene) complexes to give rise to superconductive molecular materials, in association with organic as well as organometallic cations.
The book covers different aspects of the chemistry and physics of molecular materials, including organic synthesis of specific organic donors and ligands, organic metals and superconductors, molecule-based magnets, multiproperty materials and organic-inorganic hybrids. The 17 chapters are written by some of the most authoritative authors in their field. The two last chapters are devoted to molecular electronics and devices, in particular the achievements and potential for applications. An excellent work for all students and researchers in organic conductors, superconductors and molecule based magnets.
|
You may like...
Sky Guide Southern Africa 2025 - An…
Astronomical Handbook for SA
Paperback
|