Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
This book is devoted to nanomicrobiology and the nanosystems of bacteria. The initial chapter discusses some of the controversies in the geochemical and biomedical fields associated with the reports of nanobacteria in the environment. Current knowledge of several internal and surface structures of bacteria is addressed in this book. Included are chapters discussing carboxysomes, S-layers, gliding motility of bacteria, and aggregation of iron to produce nano-magnetite. Information about the activities of outer membrane vesicles produced by Gram-negative bacteria is discussed as a benefit to bacteria that produce it and some potential industrial applications are presented. A broad review of bacterial-mineral interactions is addressed in a chapter of metallic nanoparticles and colloids production by bacterial reduction of soluble redox active elements. The structures of bacterial nanowires are discussed and their application in extra-cellular electron transport is reviewed. Nanomotor activities of bacteria are discussed as pertains to the mechanics of flagellar rotation, production of energy by ATP synthase, DNA packing, and translocation of proteins across membranes by secretion systems. The rapidly evolving field of nanosystem technology is embracing many areas, and it is the hope that this book will stimulate the use of bacterial nanostructures for future developments in nanotechnology.
During the past twenty years, multitudes of exciting discoveries in the field of anaerobic bacteria have been made. BIOCHEMISTRY AND PHYSIOLOGY OF ANAEROBIC BACTERIA explores the full range of these microorganisms. Many anaerobes have been found to have the uniquely fascinating quality of being able to survive, indeed even thrive, in extreme environments. Anaerobic bacteria often do not require oxygen, can survive extremes in temperature, and can withstand the presence of toxins and heavy metals. In addition, these organisms have very different metabolic processes than "conventional" microorganisms. The wide diversity of metabolism in anaerobes is only part of the story. They have distinct energies, cytochromes, electron transport proteins, hydrogenases and dohydrogenases. Their molecular biology, physiology, and ability to use many types of electron receptors (CO2, sulfur, nitrogen and metal oxides) are also extraordinary. With practical applications ranging from wastewater treatment to food storage issues, clinical diagnosis and treatment of a wide range of medical conditions to decontamination of heavy metal exposures BIOCHEMISTRY AND PHYSIOLOGY OF ANAEROBIC BACTERIA will prove indispensable to researchers and students alike.
This book uses an interdisciplinary approach to provide a comprehensive review on the status of iron nutrition in plants. International scientists discuss research on acquisition of iron by strategy I and strategy II plants. These reviews summarize a variety of plant species and include both laboratory and field observations.Topics covered in this book include: plants as a source of iron for animals and humans, iron translocation in the plants, iron-stimulated activities that influence crop yield and fruit tree productivity, iron uptake by plants as influenced by microorganisms (i.e. free living soil microorganisms, symbiotic nitrogen-fixing and pathogenic bacteria), the role of plant hormones in iron transport, iron-metal competition in phytoremediation, root zone activities involving interactions between minerals and organic matter.
In this well-illustrated reference, contributors summarize current research on sulfate-reducing bacteria and examine their relationship to biotechnology processes. This approach enables researchers to identify and define appropriate questions for future research. Chapters examine the biochemical and physiological characteristics of sulfate-reducing eubacteria and archaebacteria and review environmental and industrial activities of these bacteria. This volume features the first review on bioremediation by sulfate-reducing bacteria.
For several decades, bacteria have served as model systems to describe the life p- cesses of growth and metabolism. In addition, it is well recognized that prokaryotes have contributed greatly to the many advances in the areas of ecology, evolution, and biotechnology. This understanding of microorganisms is based on studies of members from both theBacteria andArchaea domains. With each issue of the various scienti?c publications, new characteristics of prokaryotic cells are being reported and it is - portant to place these insights in the context of the appropriate physiological processes. Structural and Functional Relationships in Prokaryotes describes the fundamental physiological processes for members of the Archaea and Bacteria domains. The - ganization of the book re?ects the emphasis that I have used in my 30 years of teaching a course of bacterial physiology. The philosophy used in the preparation of this book is to focus on the fundamental features of prokaryotic physiology and to use these features as the basis for comparative physiology. Even though diverse phenotypes have evolved from myriad genetic possibilities, these prokaryotes display considerable functional similarity and support the premise that there is a unity of physiology in the prokaryotes. The variations observed in the chemical structures and biochemical p- cesses are important in contributing to the persistence of microbial strains in a speci?c environment.
The interaction of microorganisms with geological activities results in processes influencing development of the Earth's geo- and biospheres. In assessing these microbial functions, scientists have explored short- and longterm geological changes attributed to microorganisms and developed new approaches to evaluate the physiology of microbes including microbial interaction with the geological environment. As the field of geomicrobiology developed, it has become highly interdisciplinary and this book provides a review of the recent developments in a cross section of topics including origin of life, microbial-mineral interactions and microbial processes functioning in marine as well as terrestrial environments. A major component of this book addresses molecular techniques to evaluate microbial evolution and assess relationships of microbes in complex, natural c- munities. Recent developments in so-called 'omics' technologies, including (meta) genomics and (meta)proteomics, and isotope labeling methods allow new insights into the function of microbial community members and their possible geological impact. While this book summarizes current knowledge in various areas, it also reveals unresolved questions that require future investigations. Information in these chapters enhances our fundamental knowledge of geomicrobiology that contributes to the exploitation of microbial functions in mineral and environmental biotechn- ogy applications. It is our hope that this book will stimulate interest in the general field of geomicrobiology and encourage others to explore microbial processes as applied to the Earth.
The abundance of sulfate-reducing bacteria and archaea (SRBA) is impressive and new isolates are being reported continuously. A few decades ago, only two genera of sulfate-reducing bacteria (SRB) had been identified. As of 2018, 92 genera containing more than 420 species of SRB have been isolated and characterized and there are several species of archaea. This book addresses the development of the research with SRBA and includes historical background of this field. Biochemical characterization of the enzymes, cytochromes and electron carriers involved with dissimilatory sulfate reduction are reviewed and the presence of relevant genes in cultured and uncultured SRBA are assessed using genome analysis. The contributions of transmembrane electron transport complexes as related to cell energetics are discussed. This book highlights the unique cellular and molecular features of the SRBA and discusses the biochemical interactions behind their metabolic capabilities which enable SRBA to grow in extreme environments. Examples are provided to detoxify and alleviate pollution situations, to evaluate mechanisms proposed for corrosion of ferrous metals and to examine the effects of SRB on human and animal hosts.
This book is devoted to nanomicrobiology and the nanosystems of bacteria. The initial chapter discusses some of the controversies in the geochemical and biomedical fields associated with the reports of nanobacteria in the environment. Current knowledge of several internal and surface structures of bacteria is addressed in this book. Included are chapters discussing carboxysomes, S-layers, gliding motility of bacteria, and aggregation of iron to produce nano-magnetite. Information about the activities of outer membrane vesicles produced by Gram-negative bacteria is discussed as a benefit to bacteria that produce it and some potential industrial applications are presented. A broad review of bacterial-mineral interactions is addressed in a chapter of metallic nanoparticles and colloids production by bacterial reduction of soluble redox active elements. The structures of bacterial nanowires are discussed and their application in extra-cellular electron transport is reviewed. Nanomotor activities of bacteria are discussed as pertains to the mechanics of flagellar rotation, production of energy by ATP synthase, DNA packing, and translocation of proteins across membranes by secretion systems. The rapidly evolving field of nanosystem technology is embracing many areas, and it is the hope that this book will stimulate the use of bacterial nanostructures for future developments in nanotechnology.
The interaction of microorganisms with geological activities results in processes influencing development of the Earth's geo- and biospheres. In assessing these microbial functions, scientists have explored short- and longterm geological changes attributed to microorganisms and developed new approaches to evaluate the physiology of microbes including microbial interaction with the geological environment. As the field of geomicrobiology developed, it has become highly interdisciplinary and this book provides a review of the recent developments in a cross section of topics including origin of life, microbial-mineral interactions and microbial processes functioning in marine as well as terrestrial environments. A major component of this book addresses molecular techniques to evaluate microbial evolution and assess relationships of microbes in complex, natural c- munities. Recent developments in so-called 'omics' technologies, including (meta) genomics and (meta)proteomics, and isotope labeling methods allow new insights into the function of microbial community members and their possible geological impact. While this book summarizes current knowledge in various areas, it also reveals unresolved questions that require future investigations. Information in these chapters enhances our fundamental knowledge of geomicrobiology that contributes to the exploitation of microbial functions in mineral and environmental biotechn- ogy applications. It is our hope that this book will stimulate interest in the general field of geomicrobiology and encourage others to explore microbial processes as applied to the Earth.
The sulphate-reducing bacteria (SRB) are a large group of anaerobic organisms that play an important role in many biogeochemical processes. Not only are they of early origins in the development of the biosphere, but their mechanisms of energy metabolism shed light on the limits of life processes in the absence of oxygen. They are widely distributed in nature, and are regular components of engineered systems including, for example, petroleum reservoirs and oil production facilities. SRB are currently subject to extensive genomic studies, which are yielding fresh understanding of their basic biochemical mechanisms, and aiding in the development of novel techniques for the analyses of their environmental roles. This volume provides a timely update on these important microorganisms, from basic science to applications, and will therefore serve as a valuable resource for researchers and graduate students in the fields of microbial ecology, microbial physiology, bioengineering, biogeochemistry and related areas of environmental science.
The sulphate-reducing bacteria (SRB) are a large group of anaerobic organisms that play an important role in many biogeochemical processes. Not only are they of early origins in the development of the biosphere, but their mechanisms of energy metabolism shed light on the limits of life processes in the absence of oxygen. They are widely distributed in nature, and are regular components of engineered systems including, for example, petroleum reservoirs and oil production facilities. SRB are currently subject to extensive genomic studies, which are yielding fresh understanding of their basic biochemical mechanisms, and aiding in the development of novel techniques for the analyses of their environmental roles. This volume provides a timely update on these important microorganisms, from basic science to applications, and will therefore serve as a valuable resource for researchers and graduate students in the fields of microbial ecology, microbial physiology, bioengineering, biogeochemistry and related areas of environmental science.
Seeming sometimes more like science fiction than science, anaerobic bacteria have been at the center of a number of exciting new discoveries. This volume discusses and explains the diversity of metabolism, modes of protein transport, molecular biology and physiology of these unusual microbes. It has practical applications ranging from wastewater treatment to clinical diagnosis and treatment of medical conditions.
This book provides a comprehensive review on the status of iron nutrition in plants. It contains updated reviews of most relevant issues involving Fe in plants and combines research on molecular biology with physiological studies of plant-iron nutrition. It also covers molecular aspects of iron uptake and storage in Arabidopsis and transmembrane movement and translocation of iron in plants. This book should serve to stimulate continued exploration in the field.
In this well-illustrated reference, contributors summarize current research on sulfate-reducing bacteria and examine their relationship to biotechnology processes. This approach enables researchers to identify and define appropriate questions for future research. Chapters examine the biochemical and physiological characteristics of sulfate-reducing eubacteria and archaebacteria and review environmental and industrial activities of these bacteria. This volume features the first review on bioremediation by sulfate-reducing bacteria.
|
You may like...
The White Queen - The Complete Series
Rebecca Ferguson, Amanda Hale, …
Blu-ray disc
(4)
|