Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This monograph provides a theoretical treatment of the problems related to the embeddability of graphs. Among these problems are the planarity and planar embeddings of a graph, the Gaussian crossing problem, the isomorphisms of polyhedra, surface embeddability, problems concerning graphic and cographic matroids and the knot problem from topology to combinatorics are discussed. Rectilinear embeddability, and the net-embeddability of a graph, which appears from the VSLI circuit design and has been much improved by the author recently, is also illustrated. Furthermore, some optimization problems related to planar and rectilinear embeddings of graphs, including those of finding the shortest convex embedding with a boundary condition and the shortest triangulation for given points on the plane, the bend and the area minimizations of rectilinear embeddings, and several kinds of graph decompositions are specially described for conditions efficiently solvable. At the end of each chapter, the Notes Section sets out the progress of related problems, the background in theory and practice, and some historical remarks. Some open problems with suggestions for their solutions are mentioned for further research.
Combinatorics as a branch of mathematics studies the arts of counting. Enumeration occupies the foundation of combinatorics with a large range of applications not only in mathematics itself but also in many other disciplines. It is too broad a task to write a book to show the deep development in every corner from this aspect. This monograph is intended to provide a unified theory for those related to the enumeration of maps. For enumerating maps the first thing we have to know is the sym metry of a map. Or in other words, we have to know its automorphism group. In general, this is an interesting, complicated, and difficult problem. In order to do this, the first problem we meet is how to make a map considered without symmetry. Since the beginning of sixties when Tutte found a way of rooting on a map, the problem has been solved. This forms the basis of the enumerative theory of maps. As soon as the problem without considering the symmetry is solved for one kind of map, the general problem with symmetry can always, in principle, be solved from what we have known about the automorphism of a polyhedron, a synonym for a map, which can be determined efficiently according to another monograph of the present author Liu58]."
Combinatorics as a branch of mathematics studies the arts of counting. Enumeration occupies the foundation of combinatorics with a large range of applications not only in mathematics itself but also in many other disciplines. It is too broad a task to write a book to show the deep development in every corner from this aspect. This monograph is intended to provide a unified theory for those related to the enumeration of maps. For enumerating maps the first thing we have to know is the sym metry of a map. Or in other words, we have to know its automorphism group. In general, this is an interesting, complicated, and difficult problem. In order to do this, the first problem we meet is how to make a map considered without symmetry. Since the beginning of sixties when Tutte found a way of rooting on a map, the problem has been solved. This forms the basis of the enumerative theory of maps. As soon as the problem without considering the symmetry is solved for one kind of map, the general problem with symmetry can always, in principle, be solved from what we have known about the automorphism of a polyhedron, a synonym for a map, which can be determined efficiently according to another monograph of the present author Liu58]."
This monograph provides a theoretical treatment of the problems related to the embeddability of graphs. Among these problems are the planarity and planar embeddings of a graph, the Gaussian crossing problem, the isomorphisms of polyhedra, surface embeddability, problems concerning graphic and cographic matroids and the knot problem from topology to combinatorics are discussed. Rectilinear embeddability, and the net-embeddability of a graph, which appears from the VSLI circuit design and has been much improved by the author recently, is also illustrated. Furthermore, some optimization problems related to planar and rectilinear embeddings of graphs, including those of finding the shortest convex embedding with a boundary condition and the shortest triangulation for given points on the plane, the bend and the area minimizations of rectilinear embeddings, and several kinds of graph decompositions are specially described for conditions efficiently solvable. At the end of each chapter, the Notes Section sets out the progress of related problems, the background in theory and practice, and some historical remarks. Some open problems with suggestions for their solutions are mentioned for further research.
|
You may like...
|