Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Current1y there is a vast amount of literature on nonlinear programming in finite dimensions. The pub1ications deal with convex analysis and severa1 aspects of optimization. On the conditions of optima1ity they deal mainly with generali- tions of known results to more general problems and also with less restrictive assumptions. There are also more general results dealing with duality. There are yet other important publications dealing with algorithmic deve10pment and their applications. This book is intended for researchers in nonlinear programming, and deals mainly with convex analysis, optimality conditions and duality in nonlinear programming. It consolidates the classic results in this area and some of the recent results. The book has been divided into two parts. The first part gives a very comp- hensive background material. Assuming a background of matrix algebra and a senior level course in Analysis, the first part on convex analysis is self-contained, and develops some important results needed for subsequent chapters. The second part deals with optimality conditions and duality. The results are developed using extensively the properties of cones discussed in the first part. This has faci- tated derivations of optimality conditions for equality and inequality constrained problems. Further, minimum-principle type conditions are derived under less restrictive assumptions. We also discuss constraint qualifications and treat some of the more general duality theory in nonlinear programming.
As the Solutions Manual, this book is meant to accompany the main title, Nonlinear Programming: Theory and Algorithms, Third Edition. This book presents recent developments of key topics in nonlinear programming (NLP) using a logical and self-contained format. The volume is divided into three sections: convex analysis, optimality conditions, and dual computational techniques. Precise statements of algortihms are given along with convergence analysis. Each chapter contains detailed numerical examples, graphical illustrations, and numerous exercises to aid readers in understanding the concepts and methods discussed.
The authoritative guide to modeling and solving complex problems with linear programming--extensively revised, expanded, and updated The only book to treat both linear programming techniques and network flows under one cover, "Linear Programming and Network Flows, Fourth Edition" has been completely updated with the latest developments on the topic. This new edition continues to successfully emphasize modeling concepts, the design and analysis of algorithms, and implementation strategies for problems in a variety of fields, including industrial engineering, management science, operations research, computer science, and mathematics. The book begins with basic results on linear algebra and convex analysis, and a geometrically motivated study of the structure of polyhedral sets is provided. Subsequent chapters include coverage of cycling in the simplex method, interior point methods, and sensitivity and parametric analysis. Newly added topics in the "Fourth Edition" include: The cycling phenomenon in linear programming and the geometry of cycling Duality relationships with cycling Elaboration on stable factorizations and implementation strategies Stabilized column generation and acceleration of Benders and Dantzig-Wolfe decomposition methods Line search and dual ascent ideas for the out-of-kilter algorithm Heap implementation comments, negative cost circuit insights, and additional convergence analyses for shortest path problems The authors present concepts and techniques that are illustrated by numerical examples along with insights complete with detailed mathematical analysis and justification. An emphasis is placed on providing geometric viewpoints and economic interpretations as well as strengthening the understanding of the fundamental ideas. Each chapter is accompanied by "Notes" and "References" sections that provide historical developments in addition to current and future trends. Updated exercises allow readers to test their comprehension of the presented material, and extensive references provide resources for further study. "Linear Programming and Network Flows, Fourth Edition" is an excellent book for linear programming and network flow courses at the upper-undergraduate and graduate levels. It is also a valuable resource for applied scientists who would like to refresh their understanding of linear programming and network flow techniques.
COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED Nonlinear Programming: Theory and Algorithms--now in an extensively updated Third Edition-- addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The Third Edition begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction. Concentration on the three major parts of nonlinear programming is provided: Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programming Optimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditions Algorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problems Important features of the Third Edition include: New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and more Updated discussion and new applications in each chapter Detailed numerical examples and graphical illustrations Essential coverage of modeling andformulating nonlinear programs Simple numerical problems Advanced theoretical exercises The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.
Presenting recent developments of key topics in nonlinear programming, this text looks specifically at three main areas; convex analysis, optimality conditions and dual computational techniques.
|
You may like...
Terminator 6: Dark Fate
Linda Hamilton, Arnold Schwarzenegger
Blu-ray disc
(1)
R76 Discovery Miles 760
|