Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Applying mechanisms and principles of human intelligence and converging the brain and artificial intelligence (AI) is currently a research trend. The applications of AI in brain simulation are countless. Brain-inspired intelligent systems will improve next-generation information processing by applying theories, techniques, and applications inspired by the information processing principles from the brain. Exploring Future Opportunities of Brain-Inspired Artificial Intelligence focuses on the convergence of AI with brain-inspired intelligence. It presents research on brain-inspired cognitive machines with vision, audition, language processing, and thinking capabilities. Covering topics such as data analysis tools, knowledge representation, and super-resolution, this premier reference source is an essential resource for engineers, developers, computer scientists, students and educators of higher education, librarians, researchers, and academicians.
Communication based on the internet of things (IoT) generates huge amounts of data from sensors over time, which opens a wide range of applications and areas for researchers. The application of analytics, machine learning, and deep learning techniques over such a large volume of data is a very challenging task. Therefore, it is essential to find patterns, retrieve novel insights, and predict future behavior using this large amount of sensory data. Artificial intelligence (AI) has an important role in facilitating analytics and learning in the IoT devices. Applying AI-Based IoT Systems to Simulation-Based Information Retrieval provides relevant frameworks and the latest empirical research findings in the area. It is ideal for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society and trust at the levels of the global economy, networks and organizations, teams and work groups, information systems, and individuals as actors in the networked environments. Covering topics such as blockchain visualization, computer-aided drug discovery, and health monitoring, this premier reference source is an excellent resource for business leaders and executives, IT managers, security professionals, data scientists, students and faculty of higher education, librarians, hospital administrators, researchers, and academicians.
Health surveillance and intelligence play an important role in modern health systems as more data must be collected and analyzed. It is crucial that this data is interpreted and analyzed effectively and efficiently in order to assist with diagnoses and predictions. Diagnostic Applications of Health Intelligence and Surveillance Systems is an essential reference book that examines recent studies that are driving artificial intelligence in the health sector and helping practitioners to predict and diagnose diseases. Chapters within the book focus on health intelligence and how health surveillance data can be made useful and meaningful. Covering topics that include computational intelligence, data analytics, mobile health, and neural networks, this book is crucial for healthcare practitioners, IT specialists, academicians, researchers, and students.
This book presents the fundamentals and advances in the field of data visualization and knowledge engineering, supported by case studies and practical examples. Data visualization and engineering has been instrumental in the development of many data-driven products and processes. As such the book promotes basic research on data visualization and knowledge engineering toward data engineering and knowledge. Visual data exploration focuses on perception of information and manipulation of data to enable even non-expert users to extract knowledge. A number of visualization techniques are used in a variety of systems that provide users with innovative ways to interact with data and reveal patterns. A variety of scalable data visualization techniques are required to deal with constantly increasing volume of data in different formats. Knowledge engineering deals with the simulation of the exchange of ideas and the development of smart information systems in which reasoning and knowledge play an important role. Presenting research in areas like data visualization and knowledge engineering, this book is a valuable resource for students, scholars and researchers in the field. Each chapter is self-contained and offers an in-depth analysis of real-world applications. It discusses topics including (but not limited to) spatial data visualization; biomedical visualization and applications; image/video summarization and visualization; perception and cognition in visualization; visualization taxonomies and models; abstract data visualization; information and graph visualization; knowledge engineering; human-machine cooperation; metamodeling; natural language processing; architectures of database, expert and knowledge-based systems; knowledge acquisition methods; applications, case studies and management issues: data administration issues and knowledge; tools for specifying and developing data and knowledge bases using tools based on communication aspects involved in implementing, designing and using KBSs in cyberspace; Semantic Web.
THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research findings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the field and create a broad knowledge about the most recent research. Series Editor Dr. Siddhartha Bhattacharyya, CHRIST (Deemed to be University), Bangalore, India Editorial Advisory Board Dr. Elizabeth Behrman, Wichita State University, Kansas, USA Dr. Goran Klepac Dr. Leo Mrsic, Algebra University College, Croatia Dr. Aboul Ella Hassanien, Cairo University, Egypt Dr. Jan Platos, VSB-Technical University of Ostrava, Czech Republic Dr. Xiao-Zhi Gao, University of Eastern Finland, Finland Dr. Wellington Pinheiro dos Santos, Federal University of Pernambuco, Brazil
Communication based on the internet of things (IoT) generates huge amounts of data from sensors over time, which opens a wide range of applications and areas for researchers. The application of analytics, machine learning, and deep learning techniques over such a large volume of data is a very challenging task. Therefore, it is essential to find patterns, retrieve novel insights, and predict future behavior using this large amount of sensory data. Artificial intelligence (AI) has an important role in facilitating analytics and learning in the IoT devices. Applying AI-Based IoT Systems to Simulation-Based Information Retrieval provides relevant frameworks and the latest empirical research findings in the area. It is ideal for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society and trust at the levels of the global economy, networks and organizations, teams and work groups, information systems, and individuals as actors in the networked environments. Covering topics such as blockchain visualization, computer-aided drug discovery, and health monitoring, this premier reference source is an excellent resource for business leaders and executives, IT managers, security professionals, data scientists, students and faculty of higher education, librarians, hospital administrators, researchers, and academicians.
Applying mechanisms and principles of human intelligence and converging the brain and artificial intelligence (AI) is currently a research trend. The applications of AI in brain simulation are countless. Brain-inspired intelligent systems will improve next-generation information processing by applying theories, techniques, and applications inspired by the information processing principles from the brain. Exploring Future Opportunities of Brain-Inspired Artificial Intelligence focuses on the convergence of AI with brain-inspired intelligence. It presents research on brain-inspired cognitive machines with vision, audition, language processing, and thinking capabilities. Covering topics such as data analysis tools, knowledge representation, and super-resolution, this premier reference source is an essential resource for engineers, developers, computer scientists, students and educators of higher education, librarians, researchers, and academicians.
|
You may like...
Maintenance Management
Fausto Pedro Garcia Marquez, Mayorkinos Papaelias
Hardcover
Modelling of Corroding Concrete…
Carmen Andrade, Giuseppe Mancini
Hardcover
Little Bird Of Auschwitz - How My Mother…
Alina Peretti, Jacques Peretti
Paperback
|