0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Non-perturbative Renormalization Group Approach to Some Out-of-Equilibrium Systems - Diffusive Epidemic Process and Fully... Non-perturbative Renormalization Group Approach to Some Out-of-Equilibrium Systems - Diffusive Epidemic Process and Fully Developed Turbulence (Hardcover, 1st ed. 2020)
Malo Tarpin
R2,799 Discovery Miles 27 990 Ships in 10 - 15 working days

This thesis presents the application of non-perturbative, or functional, renormalization group to study the physics of critical stationary states in systems out-of-equilibrium. Two different systems are thereby studied. The first system is the diffusive epidemic process, a stochastic process which models the propagation of an epidemic within a population. This model exhibits a phase transition peculiar to out-of-equilibrium, between a stationary state where the epidemic is extinct and one where it survives. The present study helps to clarify subtle issues about the underlying symmetries of this process and the possible universality classes of its phase transition. The second system is fully developed homogeneous isotropic and incompressible turbulence. The stationary state of this driven-dissipative system shows an energy cascade whose phenomenology is complex, with partial scale-invariance, intertwined with what is called intermittency. In this work, analytical expressions for the space-time dependence of multi-point correlation functions of the turbulent state in 2- and 3-D are derived. This result is noteworthy in that it does not rely on phenomenological input except from the Navier-Stokes equation and that it becomes exact in the physically relevant limit of large wave-numbers. The obtained correlation functions show how scale invariance is broken in a subtle way, related to intermittency corrections.

Non-perturbative Renormalization Group Approach to Some Out-of-Equilibrium Systems - Diffusive Epidemic Process and Fully... Non-perturbative Renormalization Group Approach to Some Out-of-Equilibrium Systems - Diffusive Epidemic Process and Fully Developed Turbulence (Paperback, 1st ed. 2020)
Malo Tarpin
R2,789 Discovery Miles 27 890 Ships in 10 - 15 working days

This thesis presents the application of non-perturbative, or functional, renormalization group to study the physics of critical stationary states in systems out-of-equilibrium. Two different systems are thereby studied. The first system is the diffusive epidemic process, a stochastic process which models the propagation of an epidemic within a population. This model exhibits a phase transition peculiar to out-of-equilibrium, between a stationary state where the epidemic is extinct and one where it survives. The present study helps to clarify subtle issues about the underlying symmetries of this process and the possible universality classes of its phase transition. The second system is fully developed homogeneous isotropic and incompressible turbulence. The stationary state of this driven-dissipative system shows an energy cascade whose phenomenology is complex, with partial scale-invariance, intertwined with what is called intermittency. In this work, analytical expressions for the space-time dependence of multi-point correlation functions of the turbulent state in 2- and 3-D are derived. This result is noteworthy in that it does not rely on phenomenological input except from the Navier-Stokes equation and that it becomes exact in the physically relevant limit of large wave-numbers. The obtained correlation functions show how scale invariance is broken in a subtle way, related to intermittency corrections.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Pink Non-Stretch Fabric Plaster Roll
R10 Discovery Miles 100
Financial Accounting - An Introduction
Jacqui Kew Paperback R623 Discovery Miles 6 230
Sudocrem Skin & Baby Care Barrier Cream…
R210 Discovery Miles 2 100
Red Elephant Horizon Backpack…
R486 Discovery Miles 4 860
Hoover H84-7WD-ZA Wet & Dry Hand Vacuum…
 (1)
R799 R725 Discovery Miles 7 250
ZA Cute Butterfly Earrings and Necklace…
R712 R499 Discovery Miles 4 990
Tenet
John David Washington, Robert Pattinson Blu-ray disc  (1)
R52 Discovery Miles 520
Fidget Toy Creation Lab
Kit R199 R95 Discovery Miles 950
Cracker Island
Gorillaz CD R207 R148 Discovery Miles 1 480
Switched High Surge 12-Way Multiplug…
R499 R427 Discovery Miles 4 270

 

Partners