Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
The book focuses on content recognition in text. It elaborates on the past and current most successful algorithms and their application in a variety of domains (e.g., news filtering, mining of biomedical text, intelligence gathering, competitive intelligence, legal information searching, and processing of informal text). An important part discusses current statistical and machine learning algorithms for information detection and classification and integrates their results in probabilistic retrieval models. The book also reveals a number of ideas towards an advanced understanding and synthesis of textual content.
Automatic Indexing and Abstracting of Document Texts summarizes the latest techniques of automatic indexing and abstracting, and the results of their application. It also places the techniques in the context of the study of text, manual indexing and abstracting, and the use of the indexing descriptions and abstracts in systems that select documents or information from large collections. Important sections of the book consider the development of new techniques for indexing and abstracting. The techniques involve the following: using text grammars, learning of the themes of the texts including the identification of representative sentences or paragraphs by means of adequate cluster algorithms, and learning of classification patterns of texts. In addition, the book is an attempt to illuminate new avenues for future research. Automatic Indexing and Abstracting of Document Texts is an excellent reference for researchers and professionals working in the field of content management and information retrieval.
Originating from Facebook, LinkedIn, Twitter, Instagram, YouTube, and many other networking sites, the social media shared by users and the associated metadata are collectively known as user generated content (UGC). To analyze UGC and glean insight about user behavior, robust techniques are needed to tackle the huge amount of real-time, multimedia, and multilingual data. Researchers must also know how to assess the social aspects of UGC, such as user relations and influential users. Mining User Generated Content is the first focused effort to compile state-of-the-art research and address future directions of UGC. It explains how to collect, index, and analyze UGC to uncover social trends and user habits. Divided into four parts, the book focuses on the mining and applications of UGC. The first part presents an introduction to this new and exciting topic. Covering the mining of UGC of different medium types, the second part discusses the social annotation of UGC, social network graph construction and community mining, mining of UGC to assist in music retrieval, and the popular but difficult topic of UGC sentiment analysis. The third part describes the mining and searching of various types of UGC, including knowledge extraction, search techniques for UGC content, and a specific study on the analysis and annotation of Japanese blogs. The fourth part on applications explores the use of UGC to support question-answering, information summarization, and recommendations.
Automatic Indexing and Abstracting of Document Texts summarizes the latest techniques of automatic indexing and abstracting, and the results of their application. It also places the techniques in the context of the study of text, manual indexing and abstracting, and the use of the indexing descriptions and abstracts in systems that select documents or information from large collections. Important sections of the book consider the development of new techniques for indexing and abstracting. The techniques involve the following: using text grammars, learning of the themes of the texts including the identification of representative sentences or paragraphs by means of adequate cluster algorithms, and learning of classification patterns of texts. In addition, the book is an attempt to illuminate new avenues for future research. Automatic Indexing and Abstracting of Document Texts is an excellent reference for researchers and professionals working in the field of content management and information retrieval.
This book covers content recognition in text, elaborating on past and current most successful algorithms and their application in a variety of settings: news filtering, mining of biomedical text, intelligence gathering, competitive intelligence, legal information searching, and processing of informal text. Today, there is considerable interest in integrating the results of information extraction in retrieval systems, because of the demand for search engines that return precise answers to flexible information queries.
This two-volume set LNCS 12656 and 12657 constitutes the refereed proceedings of the 43rd European Conference on IR Research, ECIR 2021, held virtually in March/April 2021, due to the COVID-19 pandemic.The 50 full papers presented together with 11 reproducibility papers, 39 short papers, 15 demonstration papers, 12 CLEF lab descriptions papers, 5 doctoral consortium papers, 5 workshop abstracts, and 8 tutorials abstracts were carefully reviewed and selected from 436 submissions. The accepted contributions cover the state of the art in IR: deep learning-based information retrieval techniques, use of entities and knowledge graphs, recommender systems, retrieval methods, information extraction, question answering, topic and prediction models, multimedia retrieval, and much more.
This two-volume set LNCS 12656 and 12657 constitutes the refereed proceedings of the 43rd European Conference on IR Research, ECIR 2021, held virtually in March/April 2021, due to the COVID-19 pandemic.The 50 full papers presented together with 11 reproducibility papers, 39 short papers, 15 demonstration papers, 12 CLEF lab descriptions papers, 5 doctoral consortium papers, 5 workshop abstracts, and 8 tutorials abstracts were carefully reviewed and selected from 436 submissions. The accepted contributions cover the state of the art in IR: deep learning-based information retrieval techniques, use of entities and knowledge graphs, recommender systems, retrieval methods, information extraction, question answering, topic and prediction models, multimedia retrieval, and much more.
This book constitutes the refereed proceedings of the 38th European Conference on IR Research, ECIR 2016, held in Padua, Italy, in March 2016. The 42 full papers and 28 poster papers presented together with 3 keynote talks and 6 demonstration papers, were carefully reviewed and selected from 284 submissions. The volume contains the outcome of 4 workshops as well as 4 tutorial papers in addition. Being the premier European forum for the presentation of new research results in the field of Information Retrieval, ECIR features a wide range of topics such as: social context and news, machine learning, question answering, ranking, evaluation methodology, probalistic modeling, evaluation issues, multimedia and collaborative filtering, and many more.
|
You may like...
Conspiracy in the French Revolution
Peter R Campbell, Thomas Kaiser, …
Paperback
R617
Discovery Miles 6 170
Lives of the Signers to the Declaration…
Charles Augustus Goodrich
Paperback
R630
Discovery Miles 6 300
The French Revolution - A Captivating…
Captivating History
Hardcover
|