Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
Logic Synthesis for Low Power VLSI Designs presents a systematic and comprehensive treatment of power modeling and optimization at the logic level. More precisely, this book provides a detailed presentation of methodologies, algorithms and CAD tools for power modeling, estimation and analysis, synthesis and optimization at the logic level. Logic Synthesis for Low Power VLSI Designs contains detailed descriptions of technology-dependent logic transformations and optimizations, technology decomposition and mapping, and post-mapping structural optimization techniques for low power. It also emphasizes the trade-off techniques for two-level and multi-level logic circuits that involve power dissipation and circuit speed, in the hope that the readers can better understand the issues and ways of achieving their power dissipation goal while meeting the timing constraints. Logic Synthesis for Low Power VLSI Designs is written for VLSI design engineers, CAD professionals, and students who have had a basic knowledge of CMOS digital design and logic synthesis.
Integrated circuit densities and operating speeds continue to rise at an exponential rate. Chips, however, cannot get larger and faster without a sharp decrease in power consumption beyond the current levels. Minimization of power consumption in VLSI chips has thus become an important design objective. In fact, with the explosive growth in demand for portable electronics and the usual push toward more complex functionality and higher performance, power consumption has in many cases become the limiting factor in satisfying the market demand. A new generation of power-conscious CAD tools are coming onto the market to help designers estimate, optimize and verify power consumption levels at most stages of the IC design process. These tools are especially prevalent at the register-transfer level and below. There is a great need for similar tools and capabilities at the behavioral and system levels of the design process. Many researchers and CAD tool developers are working on high-level power modeling and estimation, as well as power-constrained high-level synthesis and optimization. Techniques and tools alone are, however, insufficient to optimize VLSI circuit power dissipation - a consistent and convergent design methodology is also required. Power Optimization and Synthesis at Behavioral and System Levels Using Formal Methods was written to address some of the key problems in power analysis and optimization early in the design process. In particular, this book focuses on power macro-modeling based on regression analysis and power minimization through behavioral transformations, scheduling, resource assignment and hardware/software partitioning and mapping. What differentiates this book from other published work on the subject is the mathematical basis and formalism behind the algorithms and the optimality of these algorithms subject to the stated assumptions. From the Foreword: This book makes an important contribution to the field of system design technologies by presenting a set of algorithms with guaranteed optimality properties, that can be readily applied to system-level design. This contribution is timely, because it fills the need of new methods for a new design tool generation, which supports the design of electronic systems with even more demanding requirements'. Giovanni De Micheli, Professor, Stanford University
Power Aware Design Methodologies is on power-awareness in design. The difference between low-power design and power-awareness in design is that whereas low-power design refers to minimizing power with or without a performance constraint, power-aware design refers to maximizing some other performance metric, subject to a power budget (even while reducing power dissipation). Power Aware Design Methodologies was conceived as an effort to bring all aspects of power-aware design methodologies together in a single document. It covers several layers of the design hierarchy from technology, circuit logic, and architectural levels up to the system layer. It includes discussion of techniques and methodologies for improving the power efficiency of CMOS circuits (digital and analog), systems on chip, microelectronic systems, wirelessly networked systems of computational nodes and so on. In addition to providing an in-depth analysis of the sources of power dissipation in VLSI circuits and systems and the technology and design trends, this book provides a myriad of state-of-the-art approaches to power optimization and control. The different chapters of Power Aware Design Methodologies have been written by leading researchers and experts in their respective areas. Contributions are from both academia and industry. The contributors have reported the various technologies, methodologies, and techniques in such a way that they are understandable and useful to the circuit and system designers, tool developers, and academic researchers and students. Power Aware Design Methodologies is written for the design professional and can be used as a textbook for an advanced course on power-aware designmethodologies.
Low Power Design Methodologies presents the first in-depth coverage of all the layers of the design hierarchy, ranging from the technology, circuit, logic and architectural levels, up to the system layer. The book gives insight into the mechanisms of power dissipation in digital circuits and presents state of the art approaches to power reduction. Finally, it introduces a global view of low power design methodologies and how these are being captured in the latest design automation environments. The individual chapters are written by the leading researchers in the area, drawn from both industry and academia. Extensive references are included at the end of each chapter. Audience: A broad introduction for anyone interested in low power design. Can also be used as a text book for an advanced graduate class. A starting point for any aspiring researcher.
Power Aware Design Methodologies was conceived as an effort to bring all aspects of power-aware design methodologies together in a single document. It covers several layers of the design hierarchy from technology, circuit logic, and architectural levels up to the system layer. It includes discussion of techniques and methodologies for improving the power efficiency of CMOS circuits (digital and analog), systems on chip, microelectronic systems, wirelessly networked systems of computational nodes and so on. In addition to providing an in-depth analysis of the sources of power dissipation in VLSI circuits and systems and the technology and design trends, this book provides a myriad of state-of-the-art approaches to power optimization and control. The different chapters of Power Aware Design Methodologies have been written by leading researchers and experts in their respective areas. Contributions are from both academia and industry. The contributors have reported the various technologies, methodologies, and techniques in such a way that they are understandable and useful.
Logic Synthesis for Low Power VLSI Designs presents a systematic and comprehensive treatment of power modeling and optimization at the logic level. More precisely, this book provides a detailed presentation of methodologies, algorithms and CAD tools for power modeling, estimation and analysis, synthesis and optimization at the logic level. Logic Synthesis for Low Power VLSI Designs contains detailed descriptions of technology-dependent logic transformations and optimizations, technology decomposition and mapping, and post-mapping structural optimization techniques for low power. It also emphasizes the trade-off techniques for two-level and multi-level logic circuits that involve power dissipation and circuit speed, in the hope that the readers can better understand the issues and ways of achieving their power dissipation goal while meeting the timing constraints. Logic Synthesis for Low Power VLSI Designs is written for VLSI design engineers, CAD professionals, and students who have had a basic knowledge of CMOS digital design and logic synthesis.
Low Power Design Methodologies presents the first in-depth coverage of all the layers of the design hierarchy, ranging from the technology, circuit, logic and architectural levels, up to the system layer. The book gives insight into the mechanisms of power dissipation in digital circuits and presents state of the art approaches to power reduction. Finally, it introduces a global view of low power design methodologies and how these are being captured in the latest design automation environments. The individual chapters are written by the leading researchers in the area, drawn from both industry and academia. Extensive references are included at the end of each chapter. Audience: A broad introduction for anyone interested in low power design. Can also be used as a text book for an advanced graduate class. A starting point for any aspiring researcher.
Integrated circuit densities and operating speeds continue to rise at an exponential rate. Chips, however, cannot get larger and faster without a sharp decrease in power consumption beyond the current levels. Minimization of power consumption in VLSI chips has thus become an important design objective. In fact, with the explosive growth in demand for portable electronics and the usual push toward more complex functionality and higher performance, power consumption has in many cases become the limiting factor in satisfying the market demand. A new generation of power-conscious CAD tools are coming onto the market to help designers estimate, optimize and verify power consumption levels at most stages of the IC design process. These tools are especially prevalent at the register-transfer level and below. There is a great need for similar tools and capabilities at the behavioral and system levels of the design process. Many researchers and CAD tool developers are working on high-level power modeling and estimation, as well as power-constrained high-level synthesis and optimization. Techniques and tools alone are, however, insufficient to optimize VLSI circuit power dissipation - a consistent and convergent design methodology is also required. Power Optimization and Synthesis at Behavioral and System Levels Using Formal Methods was written to address some of the key problems in power analysis and optimization early in the design process. In particular, this book focuses on power macro-modeling based on regression analysis and power minimization through behavioral transformations, scheduling, resource assignment and hardware/software partitioning and mapping. What differentiates this book from other published work on the subject is the mathematical basis and formalism behind the algorithms and the optimality of these algorithms subject to the stated assumptions. From the Foreword: `This book makes an important contribution to the field of system design technologies by presenting a set of algorithms with guaranteed optimality properties, that can be readily applied to system-level design. This contribution is timely, because it fills the need of new methods for a new design tool generation, which supports the design of electronic systems with even more demanding requirements'. Giovanni De Micheli, Professor, Stanford University
Computer-Aided Design and Optimization of Hybrid Energy Storage Systems covers a wide range of topics related to the computer-aided design and runtime management of Hybrid Energy Storage Systems (HESS). As electrical energy consumption increases and power generation operating reserve margins becomes tighter, the need for high-performance yet cost-effective energy storage system (ESS) is rising. Hybrid ESS (HESS) is an emerging technology that builds a high-performance and cost-effective ESS with currently available energy storage element technologies. Design and operation of the HESS is far more complex than those for homogeneous ESS because of the heterogeneity of the energy storage elements. Various benefits of HESS, such as high power/energy density, low cost, high cycle efficiency, and long cycle life, cannot be achieved unless judicious optimizations are performed during design and operation. Computer-Aided Design and Optimization of Hybrid Energy Storage Systems provides an extensive survey of research work and results on key aspects of HESS, including system architecture, design optimization, and applications.It covers the basics of HESS, starting from the energy storage element technologies and homogeneous ESS to the architecture, optimization schemes, and applications of HESS in comparison with homogeneous ESS. Computer-Aided Design and Optimization of Hybrid Energy Storage Systems provides the reader with a comprehensive primer on the wide variety of technologies, metrics, and systems related to HESS.
|
You may like...
Westworld - Season 4 - The Choice
Evan Rachel Wood, Thandiwe Newton, …
DVD
R371
Discovery Miles 3 710
|