Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 19 of 19 matches in All Departments
The book reviews and reports the recent progress and knowledge on the specific impact of current and projected urban overheating as well as of the urban mitigation technologies on mortality and morbidity and urban vulnerability. It presents recent data and developments on the topic reported by some of the more distinguished researchers in this area. In parallel, it discusses new findings related to the characteristics and the magnitude of urban overheating and reports and analyzes the recent knowledge on the synergies between urban heat island and heatwaves. This book helps to advance our understanding on the interaction between Urban Heat Island (UHI) and overheating as well as their impact on energy demand and public health globally. Exploring the interaction between UHI and energy consumption requires the understanding on the dynamics of UHI intensity and air pollution index in different land use and how such interactions may vary in different cities in the world. Moreover, this book focuses on different cities in Australia, Austria, Belgium, Brazil, Canada, Cyprus, Greece, Hong Kong, India, Asia, Spain, UK, and USA.
This book presents an in-depth analysis covering climatic and weather conditions, house and building development history, construction methods and technologies, and environmental conditions. It provides relevant house and building information and highlights recent advances in hot and humid regions, as well as developments in other regions that are relevant to hot and humid climates. The countries in hot and humid regions, which include the tropical countries, the Middle Eastern countries around the Mediterranean, and many countries of Central Asia and Africa, are home to some of the most challenging conditions in the world in terms of house and building design and construction, and in terms of maintaining indoor thermal comfort and air quality in an energy-efficient way. The book's respective chapters, prepared by expert contributors, cover essential concepts, designs, and construction methodologies for houses and commercial buildings. As such, the book offers a valuable resource for undergraduate and graduate students in architecture and engineering, house and building designers, and building sciences researchers. Building contractors, manufacturers and distributors of building equipment and devices, and government policymakers and legislators will also benefit from the information provided in this book.
* International experts in the field explore the relationship of building design to the urban setting* Enables building professionals to adopt environmental design strategies in their daily work* Designed as an academic module that can satisfy postgraduate certificate requirements and is suitable for distance learning* Includes a free CD-ROMThe importance of an integrated approach in urban design is becoming increasingly apparent. This book explains how to overcome related challenges in environmental design of urban buildings and offers guidance on the use of new materials and techniques and the integration of new philosophies.Supported by the European Commission 's SAVE 13 programme, the book includes contributions from experts at the National and Kapodistrian University of Athens, Greece, the Hellenic Open University, Greece, Cambridge Architectural Research and REHVA/University of Ljubljana.
Energy Rating is a crucial consideration in modern building design, affirmed by the new EC Directive on the energy performance of buildings. Energy represents a high percentage of the running costs of a building, and has a significant impact on the comfort of the occupants. This book represents detailed information on energy rating of residential buildings, covering: * Theoretical and experimental energy rating techniques: reviewing the state of the art and offering guidance on the in situ identification of the UA and gA values of buildings. * New experimental protocols to evaluate energy performance: detailing a flexible new approach based on actual energy consumption. Data are collected using the Billed Energy Protocol (BEP) and Monitored Energy Protocol (MEP) * Energy Normalization techniques: describing established methods plus a new Climate Severity Index, which offers significant benefits to the user. Also included in this book are audit forms and a CD-ROM for applying the new rating methodology. The software, prepared in Excel, is easy to use, can be widely applied using both deterministic and experimental methods, and can be adapted to national peculiarities and energy policy criteria. Energy Performance of Residential Buildings offers full and clear treatment of the key issues and will be an invaluable source of information for energy experts, building engineers, architects, physicists, project managers and local authorities. The book stems from the EC-funded SAVE project entitled EUROCLASS. Participating institutes included: * University of Athens, Greece * Belgium Building Research Institute, Belgium * University of Seville, Spain * Royal Institute of Technology, Sweden
Advances in Building Energy Research (ABER) offers state-of-the-art information on the environmental science and performance of buildings, linking new technologies and methodologies with the latest research on systems, simulations and standards. As stringently reviewed as a journal but with the breadth of a book, this annual volume brings together invited contributions from the foremost international experts on energy efficiency and environmental quality of buildings. Spanning a broad range of technical subjects, this is a 'must have' reference on global developments in the field, suitable for architects and building engineers, environmental engineers, industry professionals, students, teachers and researchers in building science, technical libraries and laboratories. Volume 3 covers: - Energy, Carbon and Cost Performance of Building Stocks - Solar Chimneys in Buildings - Optimization and Economics of Solar Cooling Systems - Artificial Neural Networks and Genetic Algorithms in Energy Applications in Buildings - Decision Support Methodologies on the Energy Efficiency and Energy Management in Buildings - Progress in Numerical Modelling for Urban Thermal Environment Studies - Post Occupancy Evaluation (POE): An Inevitable Step Toward Sustainability - Guidelines to Avoid Mould Growth in Buildings - Thermal Impact of Strategic Landscaping in Cities - Urban Heat Island and its Impact on Building Energy Consumption - Green Roofs in Buildings: Thermal and Environmental Behaviour - Building Earth-Contact Heat Transfer
'Several high quality scientific journals are published in the area of building energy and indoor/outdoor environment; however, one has been missing. Advances in Building Energy Research fills the gap. I recommend ABER to all technical libraries, research institutes and universities. It should also be used by construction companies and those manufacturing building materials and building products.' Professor Olli Sepp nen, President of REHVA (Federation of Heating and Air-conditioning Associations) 'Advances in Building Energy Research is a unique index. It will be an inexhaustible resource for energy related sciences and a continuous inspiration for architects around the world.' N. Fintikakis, Architect and Director of UIA-ARES WP (Architecture and Renewable Energy Sources) 'The collection of articles provides an encyclopaedic overview of the state of the art of the subject; and they are written clearly and concisely. This volume is a must for researchers and advanced students.' Professor Edward Ng, Department of Architecture, The Chinese University of Hong Kong 'This is a very valuable first volume of a new series with each section written by leaders in their respective fields. Contributions cover a range of related topics and present evaluations of contemporary issues in building energy research that give the reader an immediate and clear insight.' Dr Adrian Pitts, Senior Lecturer in Energy, Environment and Sustainability, University of Sheffield Advances in Building Energy Research (ABER) offers state-of-the-art information on the environmental science and performance of buildings, linking new technologies and methodologies with the latest research on systems, simulations and standards. As stringently reviewed as a journal but with the breadth of a book, this annual volume brings together invited contributions from the foremost international experts on energy efficiency and environmental quality of buildings. Spanning a broad range of technical subjects, this is a 'must have' reference on global developments in the field, suitable for architects and building engineers, environmental engineers, industry professionals, students, teachers and researchers in building science, technical libraries and laboratories. This first volume covers double skin fa ades; artificial intelligence in buildings; indoor thermal comfort and the progress of the adaptive approach; heat island research and the effect of urban microclimate; the use of techniques such as high dynamic range imaging and satellite remote sensing; and vital management and monitoring approaches such as post-occupancy evaluation.
In the first book of its kind, this volume addresses the problem of the future cooling energy demand, the global frame defining the actual and future cooling energy consumption in the building sector. Based on the explored inputs and forecasts, a model was developed to predict the future cooling energy consumption of both the residential and commercial sector. Low energy, high-performance technological solutions for cooling energy problem in the building and city level will be presented.
Energy Rating is a crucial consideration in modern building design, affirmed by the new EC Directive on the energy performance of buildings. Energy represents a high percentage of the running costs of a building, and has a significant impact on the comfort of the occupants. This book represents detailed information on energy rating of residential buildings, covering: * Theoretical and experimental energy rating techniques: reviewing the state of the art and offering guidance on the in situ identification of the UA and gA values of buildings. * New experimental protocols to evaluate energy performance: detailing a flexible new approach based on actual energy consumption. Data are collected using the Billed Energy Protocol (BEP) and Monitored Energy Protocol (MEP) * Energy Normalization techniques: describing established methods plus a new Climate Severity Index, which offers significant benefits to the user. Also included in this book are audit forms and a CD-ROM for applying the new rating methodology. The software, prepared in Excel, is easy to use, can be widely applied using both deterministic and experimental methods, and can be adapted to national peculiarities and energy policy criteria. Energy Performance of Residential Buildings offers full and clear treatment of the key issues and will be an invaluable source of information for energy experts, building engineers, architects, physicists, project managers and local authorities. The book stems from the EC-funded SAVE project entitled EUROCLASS. Participating institutes included: * University of Athens, Greece * Belgium Building Research Institute, Belgium * University of Seville, Spain * Royal Institute of Technology, Sweden
Following a rapid increase in the use of air conditioning in buildings of all types, the energy demand for powering such devices has become a significant cause for concern. Passive cooling is increasingly being thought of as the best alternative to air conditioning. This book offers the latest knowledge and techniques on passive cooling, enabling building professionals to understand the state of the art and employ relevant new strategies. With separate chapters on comfort, urban microclimate, solar control, ventilation, ground cooling and evaporative and radiative cooling, this authoritative text will also be invaluable for architects, engineers and students working on building physics and low-energy design. Advances in Passive Cooling is part of the BEST series, edited by Mat Santamouris. The aim of the series is to present the most current, high quality theoretical and application oriented material in the field of solar energy and energy efficient buildings. Leading international experts cover the strategies and technologies that form the basis of high-performance, sustainable buildings, crucial to enhancing our built and urban environment.
The second edition of this authoritative textbook equips students with the tools they will need to tackle the challenges of sustainable building design and engineering. The book looks at how to design, engineer and monitor energy efficient buildings, how to adapt buildings to climate change, and how to make buildings healthy, comfortable and secure. New material for this edition includes sections on environmental masterplanning, renewable technologies, retrofitting, passive house design, thermal comfort and indoor air quality. With chapters and case studies from a range of international, interdisciplinary authors, the book is essential reading for students and professionals in building engineering, environmental design, construction and architecture.
Ensuring optimum ventilation performance is a vital part of building design. Prepared by recognized experts from Europe and the US, and published in association with the International Energy Agency's Air Infiltration and Ventilation Centre (AIVC), this authoritative work provides organized, classified and evaluated information on advances in the key areas of building ventilation, relevant to all building types. Complexities in airflow behaviour, climatic influences, occupancy patterns and pollutant emission characteristics make selecting the most appropriate ventilation strategy especially difficult. Recognizing such complexities, the editors bring together expertise on each key issue. From components to computer tools, this book offers detailed coverage on design, analysis and performance, and is an important and comprehensive publication in this field. Building Ventilation will be an invaluable reference for professionals in the building services industry, architects, researchers (including postgraduate students) studying building service engineering and HVAC, and anyone with a role in energy-efficient building design.
Following a rapid increase in the use of air conditioning in buildings of all types, the energy demand for powering such devices has become a significant cause for concern. Passive cooling is increasingly being thought of as the best alternative to air conditioning.This book offers the latest knowledge and techniques on passive cooling, enabling building professionals to understand the state of the art and employ relevant new strategies. With separate chapters on comfort, urban microclimate, solar control, ventilation, ground cooling and evaporative and radiative cooling, this authoritative text will also be invaluable for architects, engineers and students working on building physics and low-energy design.Advances in Passive Cooling is part of the BEST series, edited by Mat Santamouris. The aim of the series is to present the most current, high quality theoretical and application oriented material in the field of solar energy and energy efficient buildings. Leading international experts cover the strategies and technologies that form the basis of high-performance, sustainable buildings, crucial to enhancing our built and urban environment.
Ensuring optimum ventilation performance is a vital part of building design. Prepared by recognized experts from Europe and the US, and published in association with the International Energy Agency's Air Infiltration and Ventilation Centre (AIVC), this authoritative work provides organized, classified and evaluated information on advances in the key areas of building ventilation, relevant to all building types. Complexities in airflow behaviour, climatic influences, occupancy patterns and pollutant emission characteristics make selecting the most appropriate ventilation strategy especially difficult. Recognizing such complexities, the editors bring together expertise on each key issue. From components to computer tools, this book offers detailed coverage on design, analysis and performance, and is an important and comprehensive publication in this field.Building Ventilation will be an invaluable reference for professionals in the building services industry, architects, researchers (including postgraduate students) studying building service engineering and HVAC, and anyone with a role in energy-efficient building design.
This book provides a review of environmental and energy research with respect to urban building projects. It describes how to overcome related challenges in environmental design of urban buildings. The book discusses the passive and active environmental systems within building concepts.
The urban climate is continuously deteriorating. Urban heat lowers the quality of urban life, increases energy needs, and affects the urban socio-economy. Urban Climate Mitigation Techniques presents steps that can be taken to mitigate this situation through a series of innovative technologies and examples of best practices for the improvement of the urban climate. Including tools for evaluation and a comparative analysis, this book addresses anthropogenic heat, green areas, cool materials and pavements, outdoor shading structures, evaporative cooling and earth cooling. Case studies demonstrate the success and applicability of these measures in various cities throughout the world. Useful for urban designers, architects and planners, Urban Climate Mitigation Techniques is a step by step tour of the innovative technologies improving our urban climate, providing a holistic approach supported by well-established quantitative examples.
The second edition of this authoritative textbook equips students with the tools they will need to tackle the challenges of sustainable building design and engineering. The book looks at how to design, engineer and monitor energy efficient buildings, how to adapt buildings to climate change, and how to make buildings healthy, comfortable and secure. New material for this edition includes sections on environmental masterplanning, renewable technologies, retrofitting, passive house design, thermal comfort and indoor air quality. With chapters and case studies from a range of international, interdisciplinary authors, the book is essential reading for students and professionals in building engineering, environmental design, construction and architecture.
The urban climate is continuously deteriorating. Urban heat lowers the quality of urban life, increases energy needs, and affects the urban socio-economy. Urban Climate Mitigation Techniques presents steps that can be taken to mitigate this situation through a series of innovative technologies and examples of best practices for the improvement of the urban climate. Including tools for evaluation and a comparative analysis, this book addresses anthropogenic heat, green areas, cool materials and pavements, outdoor shading structures, evaporative cooling and earth cooling. Case studies demonstrate the success and applicability of these measures in various cities throughout the world. Useful for urban designers, architects and planners, Urban Climate Mitigation Techniques is a step by step tour of the innovative technologies improving our urban climate, providing a holistic approach supported by well-established quantitative examples.
Advances in Building Energy Research (ABER) offers state-of-the-art information on the environmental science and performance of buildings, linking new technologies and methodologies with the latest research on systems, simulations and standards. As stringently reviewed as a journal but with the breadth of a book, this annual volume brings together invited contributions from the foremost international experts on energy efficiency and environmental quality of buildings. Spanning a broad range of technical subjects, this is a 'must have' reference on global developments in the field, suitable for architects and building engineers, environmental engineers, industry professionals, students, teachers and researchers in building science, technical libraries and laboratories.
'Several high quality scientific journals are published in the area of building energy and indoor/outdoor environment; however, one has been missing. Advances in Building Energy Research fills the gap. I recommend ABER to all technical libraries, research institutes and universities. It should also be used by construction companies and those manufacturing building materials and building products.' Professor Olli Sepp nen, President of REHVA (Federation of Heating and Air-conditioning Associations) 'Advances in Building Energy Research is a unique index. It will be an inexhaustible resource for energy related sciences and a continuous inspiration for architects around the world.' N. Fintikakis, Architect and Director of UIA-ARES WP (Architecture and Renewable Energy Sources) Advances in Building Energy Research (ABER) offers state-of-the-art information on the environmental science and performance of buildings, linking new technologies and methodologies with the latest research on systems, simulations and standards. As stringently reviewed as a journal but with the breadth of a book, this annual volume brings together invited contributions from the foremost international experts on energy efficiency and environmental quality of buildings. Spanning a broad range of technical subjects, this is a 'must have' reference on global developments in the field, suitable for architects and building engineers, environmental engineers, industry professionals, students, teachers and researchers in building science, technical libraries and laboratories.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|