Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
Building on the success of its predecessor, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, this second volume focuses on those areas that have grown rapidly in the past few years. Contributing authors reflect the multidisciplinary nature of the book and are all leaders in their particular areas of research. Among the many topics they cover are graphene and other carbon-like and tube-like materials, which are likely to affect and influence developments in nanotubes within the next five years. Extensive use of illustrations enables you to better understand and visualize key concepts and processes.
This is an introductory textbook for graduate students and researchers from various fields of science who wish to learn about carbon nanotubes. The field is still at an early stage, and progress continues at a rapid rate. This book focuses on the basic principles behind the physical properties and gives the background necessary to understand the recent developments. Some useful computational source codes which generate coordinates for carbon nanotubes are also included in the appendix.
Ten years ago, D.M. Rowe introduced the bestselling CRC Handbook of Thermoelectrics to wide acclaim. Since then, increasing environmental concerns, desire for long-life electrical power sources, and continued progress in miniaturization of electronics has led to a substantial increase in research activity involving thermoelectrics. Reflecting the latest trends and developments, the Thermoelectrics Handbook: Macro to Nano is an extension of the earlier work and covers the entire range of thermoelectrics disciplines. Serving as a convenient reference as well as a thorough introduction to thermoelectrics, this book includes contributions from 99 leading authorities from around the world. Its coverage spans from general principles and theoretical concepts to material preparation and measurements; thermoelectric materials; thermoelements, modules, and devices; and thermoelectric systems and applications. Reflecting the enormous impact of nanotechnology on the field-as the thermoelectric properties of nanostructured materials far surpass the performance of conventional materials-each section progresses systematically from macro-scale to micro/nano-scale topics. In addition, the book contains an appendix listing major manufacturers and suppliers of thermoelectric modules. There is no longer any need to spend hours plodding through the journal literature for information. The Thermoelectrics Handbook: Macro to Nano offers a timely, comprehensive treatment of all areas of thermoelectrics in a single, unified reference.
This book provides a state of the art report of the knowledge accumulated in graphene research. The fascination with graphene has been growing very rapidly in recent years and the physics of graphene is now becoming one of the most interesting as well as the most fast-moving topics in condensed-matter physics. The Nobel prize in physics awarded in 2010 has given a tremendous impetus to this topic. The horizon of the physics of graphene is ever becoming wider, where physical concepts go hand in hand with advances in experimental techniques. Thus this book is expanding the interests to not only transport but optical and other properties for systems that include multilayer as well as monolayer graphene systems. The book comprises experimental and theoretical knowledge. The book is also accessible to graduate students.
After a short introduction and a brief review of the relation between carbon nanotubes, graphite and other forms of carbon, the synthesis techniques and growth mechanisms for carbon nanotubes are described. This is followed by reviews on nanotube electronic structure, electrical, optical, and mechanical properties, nanotube imaging and spectroscopy, and nanotube applications.
This book was begun after three of the present authors gave a series of in vited talks on the subject of the structure and properties of carbon filaments. This was at a conference on the subject of optical obscuration, for which submicrometer diameter filaments with high length-to-diameter ratios have potential applications. The audience response to these talks illustrated the need of just one scientific community for a broader knowledge of the struc ture and properties of these interesting materials. Following the conference it was decided to expand the material presented in the conference proceedings. The aim was to include in a single volume a description of the physical properties of carbon fibers and filaments. The research papers on this topic are spread widely in the literature and are found in a broad assortment of physics, chemistry, materials science and engineering and polymer science journals and conference proceedings (some of which are obscure). Accordingly, our goal was to produce a book on the subject which would enable students and other researchers working in the field to gain an overview of the subject up to about 1987."
This concise, class-tested book was refined over the authors 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.
This concise, class-tested book was refined over the authors' 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.
This book fills a gap between many of the basic solid state physics and materials sciencebooks that are currently available. It is written for a mixed audience of electricalengineering and applied physics students who have some knowledge of elementaryundergraduate quantum mechanics and statistical mechanics. This book, based on asuccessful course taught at MIT, is divided pedagogically into three parts: (I) ElectronicStructure, (II) Transport Properties, and (III) Optical Properties. Each topic is explainedin the context of bulk materials and then extended to low-dimensional materials whereapplicable. Problem sets review the content of each chapter to help students to understandthe material described in each of the chapters more deeply and to prepare them to masterthe next chapters.
|
You may like...
|