Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior.
This book presents a collection of invited articles by distinguished probabilists and statisticians on the occasion of the Platinum Jubilee Celebrations of the Indian Statistical Institute a notable institute with significant achievement in research areas of statistics, probability and mathematics in 2007. With a wide coverage of topics in probability and statistics, the articles provide a current perspective of different areas of research, emphasizing the major challenging issues. The book also proves its reference and utility value for practitioners as the articles in Statistics contain applications of the methodology that will be of use to practitioners. To professional statisticians and mathematicians, this is a unique volume for its illuminating perspectives on several important aspects of probability and statistics.
This book presents a collection of invited articles by distinguished Mathematicians on the occasion of the Platinum Jubilee Celebrations of the Indian Statistical Institute, during the year 2007. These articles provide a current perspective of different areas of research, emphasizing the major challenging issues. Given the very significant record of the Institute in research in the areas of Statistics, Probability and Mathematics, distinguished authors have very admirably responded to the invitation. Some of the articles are written keeping students and potential new entrants to an area of mathematics in mind. This volume is thus very unique and gives a perspective of several important aspects of mathematics.
This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior.
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|