Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book provides examination of applications of soft computing techniques related to healthcare systems and can be used as a reference guide for assessing the roles that various techniques. Soft Computing Techniques to Enhance Services in Connected Healthcare Systems, presents soft computing techniques and applications used in healthcare systems, along with the latest advancements. The authors examine how connected healthcare is the essence of combining a practical operative procedure of interconnectedness of electronic health records, mHealth, clinical informatics, electronic data exchange, practice management solutions, and pharmacy management. The book focuses on different soft computing techniques like fuzzy logic, ANN, GA which will enhance services in connected health systems like remotely diagnosis and monitoring, medication monitoring devices, identifying and treating the underlying causes of disorders and diseases, improved access to specialist and lower healthcare costs. The chapters also examine descriptive, predictive, and social network techniques and discuss analytical tools and the important role they play in enhancing the services to connected healthcare systems. Finally, the authors address real-time challenges with real-world case studies to enhance the comprehension of topics. This book is intended for under graduate, and graduate students, researchers and practicing professionals in the field of connected healthcare. It provides an overview for beginners while also addressing professionals in the industry on the importance of soft computing approaches in connected healthcare systems.
The text discusses the techniques of deep learning and machine learning in the field of neuroscience, engineering approaches to study the brain structure and dynamics, convolutional networks for fast, energy-efficient neuromorphic computing, and reinforcement learning in feedback control. It showcases case studies in neural data analysis. The book- •Focuses on neuron modeling, development, and direction of neural circuits to explain perception, behavior, and biologically inspired intelligent agents for decision making. •Showcases important aspects such as human behavior prediction using smart technologies and understanding the modeling of nervous systems. •Discusses nature-inspired algorithms such as swarm intelligence, ant colony optimization, and multi-agent systems. •Presents information-theoretic, control-theoretic, and decision-theoretic approaches in neuroscience. •Includes case studies in functional magnetic resonance imaging (fMRI) and neural data analysis. This reference text addresses different applications of computational neurosciences using artificial intelligence, deep learning, and other machine learning techniques to fine-tune the models thereby solving the real-life problems prominently. It will further discuss important topics such as neural rehabilitation, brain-computer interfacing, neural control, neural system analysis, and neurobiologically inspired self-monitoring systems. It will serve as an ideal reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, information technology, and biomedical engineering.
Provides the fundamentals of cloud computing; Focuses on new applications for cloud computing; Analyzes real-time problems
Discusses core concepts and principles of deep learning in gaming and animation with applications. Covers application of neural networks for intelligent video game character. Discusses automated video generation and real time animation. Covers technological advancements in virtual reality (VR), and augmented reality (AR).
New prospects for biomedical and healthcare engineering are being created by the rapid development of Robotic and Artificial Intelligence techniques. Innovative technologies such as Artificial Intelligence, Deep Learning, Robotics, and IoT are currently under huge influence in today's modern world. For instance, a micro-nano robot allows us to study the fundamental problems at a cellular scale owing to its precise positioning and manipulation ability; the medical robot paves a new way for the low-invasive and high-efficient clinical operation, and rehabilitation robotics is able to improve the rehabilitative efficacy of patients. This book aims at exhibiting the latest research achievements, findings, and ideas in the field of robotics in biomedical and healthcare engineering, primarily focusing on the walking assistive robot, telerobotic surgery, upper/lower limb rehabilitation, and radiosurgery. As a result, a wide range of robots are being developed to serve a variety of roles within the medical environment. Robots specializing in human treatment include surgical robots and rehabilitation robots. The field of assistive and therapeutic robotic devices is also expanding rapidly. These include robots that help patients rehabilitate from severe conditions like strokes, empathic robots that assist in the care of older or physically/mentally challenged individuals, and industrial robots that take on a variety of routine tasks, such as sterilizing rooms and delivering medical supplies and equipment, including medications. The objectives of the book are in terms of advancing the state-of-the-art of robotic techniques and addressing the challenging problems in biomedical and healthcare engineering. This book Lays a good foundation for the core concepts and principles of robotics in biomedical and healthcare engineering, walking the reader through the fundamental ideas with expert ease. Progresses on the topics in a step-by-step manner and reinforces theory with a full-fledged pedagogy designed to enhance students' understanding and offer them a practical insight into the applications of it. Features chapters that introduce and cover novel ideas in healthcare engineering like Applications of Robots in Surgery, Microrobots and Nanorobots in Healthcare Practices, Intelligent Walker for Posture Monitoring, AI-Powered Robots in Biomedical and Hybrid Intelligent Systems for Medical Diagnosis, and so on. Deepak Gupta is an Assistant Professor at the Maharaja Agrasen Institute of Technology, GGSIPU, Delhi, India. Moolchand Sharma is an Assistant Professor at the Maharaja Agrasen Institute of Technology, GGSIPU, Delhi, India. Vikas Chaudhary is a Professor at the JIMS Engineering Management Technical Campus, GGSIPU, Greater Noida, India. Ashish Khanna currently works at the Maharaja Agrasen Institute of Technology, GGSIPU, Delhi, India.
Provides the fundamentals of cloud computing; Focuses on new applications for cloud computing; Analyzes real-time problems
New prospects for biomedical and healthcare engineering are being created by the rapid development of Robotic and Artificial Intelligence techniques. Innovative technologies such as Artificial Intelligence, Deep Learning, Robotics, and IoT are currently under huge influence in today’s modern world. For instance, a micro-nano robot allows us to study the fundamental problems at a cellular scale owing to its precise positioning and manipulation ability; the medical robot paves a new way for the low-invasive and high-efficient clinical operation, and rehabilitation robotics is able to improve the rehabilitative efficacy of patients. This book aims at exhibiting the latest research achievements, findings, and ideas in the field of robotics in biomedical and healthcare engineering, primarily focusing on the walking assistive robot, telerobotic surgery, upper/lower limb rehabilitation, and radiosurgery. As a result, a wide range of robots are being developed to serve a variety of roles within the medical environment. Robots specializing in human treatment include surgical robots and rehabilitation robots. The field of assistive and therapeutic robotic devices is also expanding rapidly. These include robots that help patients rehabilitate from severe conditions like strokes, empathic robots that assist in the care of older or physically/mentally challenged individuals, and industrial robots that take on a variety of routine tasks, such as sterilizing rooms and delivering medical supplies and equipment, including medications. The objectives of the book are in terms of advancing the state-of-the-art of robotic techniques and addressing the challenging problems in biomedical and healthcare engineering. This book Lays a good foundation for the core concepts and principles of robotics in biomedical and healthcare engineering, walking the reader through the fundamental ideas with expert ease. Progresses on the topics in a step-by-step manner and reinforces theory with a full-fledged pedagogy designed to enhance students’ understanding and offer them a practical insight into the applications of it. Features chapters that introduce and cover novel ideas in healthcare engineering like Applications of Robots in Surgery, Microrobots and Nanorobots in Healthcare Practices, Intelligent Walker for Posture Monitoring, AI-Powered Robots in Biomedical and Hybrid Intelligent Systems for Medical Diagnosis, and so on. Deepak Gupta is an Assistant Professor at the Maharaja Agrasen Institute of Technology, GGSIPU, Delhi, India. Moolchand Sharma is an Assistant Professor at the Maharaja Agrasen Institute of Technology, GGSIPU, Delhi, India. Vikas Chaudhary is a Professor at the JIMS Engineering Management Technical Campus, GGSIPU, Greater Noida, India. Ashish Khanna currently works at the Maharaja Agrasen Institute of Technology, GGSIPU, Delhi, India.
This book presents Internet of Things (IoT) technology and security-related solutions that employ intelligent data processing technologies and machine learning (ML) approaches for data analytics. It presents practical scenarios from the industry for the application of the internet of things in various domains. Next Generation Communication Networks for Industrial Internet of Things Systems presents concepts and research challenges in communication networking for Industrial internet of things systems. Features: Discusses process monitoring, environmental monitoring, control, and maintenance monitoring. Covers data collection and communication protocols in a comprehensive manner. Highlights the internet of things industrial applications, and industrial revolution 4.0. Presents 5G-enabled internet of things technology and architecture. Showcases artificial intelligence techniques in the IoT networks. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in the areas of electrical engineering, electronics, and communications engineering, computer engineering, and information technology.
|
You may like...
|