Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 41 matches in All Departments
The book describes recent progress of near-field optical science and technology. The title of the book implies capabilities of optical near-field not only for imaging/microscopy but also for fabrication/manipulation/processing in nanometric scale. The authors introduce the differences between near-field optics and far-field optics from both an experimental and theoretical perspective. The book touches on a wide range of topics in near-field optics, and can be used both by the novice and experienced researcher already familiar with the subject, to connect the experimental with the theoretical aspects of near-field optics.
This book focuses on the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology, and security systems. It begins with a review of the concept of dressed photons and applications to devices, fabrication, and systems; principles and applications. Further topics include: DNA process for quantum dot chain, photon enhanced emission microscopy, near field spectroscopy of metallic nanostructure, self-organized fabrication of composite semiconductor quantum dots, formation of metallic nanostructure, and nanophotonic information systems with security. These topics are reviewed by seven leading scientists. This overview is a variable resource for engineers and scientists working in the field of nanophotonics.
Authored by the developer of dressed photon science and technology as well as nanophotonics, this book outlines concepts of the subject using a novel theoretical framework that differs from conventional wave optics. It provides a quantum theoretical description of optical near fields and related problems that puts matter excitation such as electronic and vibrational ones on an equal footing with photons. By this description, optical near fields are interpreted as quasi-particles and named dressed photons which carry the material excitation energy in a nanometric space. The author then explores novel nanophotonic devices, fabrications, and energy conversion based on the theoretical picture of dressed photons. Further, this book looks at how the assembly of nanophotonic devices produces information and communication systems. Dressed photon science and technology is on its way to revolutionizing various applications in devices, fabrications, and systems. Promoting further exploration in the field, this book presents physically intuitive concepts, theories, and technical details for students, engineers, and scientists engaged in research and development in dressed photon science and technology as well as nanophotonics.
This volume focuses on nano-optical probing, manipulation, and analysis. It begins with recent developments in near-field optical spectroscopy that clarify quantum states at the nanoscale, followed by a theory for a photon-electron-phonon interacting system at the nanoscale. Further topics include: visible laser desorption/ionization mass spectroscopy exhibiting near-field effects; a practical nanofabrication method with optical near fields applied to a SHG device; a theory and experimental achievements on optical transport of nanoparticles, selectively manipulated by resonant radiation force. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.
Using the thin film of light, the optical near field, that is localized on the surface of a nanometric material has removed the diffraction limit as a barrier to imaging on the nano- and atomic scales. But a paradigm shift in the concepts of optics and optical technology is required to understand the instrinsic nature of the near fields and how best to exploit them. Professors Ohstu and Kobayashi crafted Optical Near Fields on the basis of their hypothesis that the full potential for utilizing optical near fields can be realized only with novel nanometric processing, functions, and manipulation, i.e., by controlling the intrinsic interaction between nanometer-sized optical near fields and material systems, and further, atoms. The book presents physically intuitive concepts and theories for students, engineers, and scientists engaged in research in nanophotonics and atom photonics.
Sizes of electronic and photonic devices are decreasing drastically in order to increase the degree of integration for large-capacity and ultrahigh speed signal transmission and information processing. This miniaturization must be rapidly progressed from now onward. For this progress, the sizes of materials for composing these devices will be also decreased to several nanometers. If such a nanometer-sized material is combined with the photons and/or some other fields, it can exhibit specific characters, which are considerably different from those ofbulky macroscopic systems. This combined system has been called as a mesoscopic system. The first purpose of this book is to study the physics of the mesoscopic system. For this study, it is essential to diagnose the characteristics of miniaturized devices and materials with the spatial resolution as high as several nanometers or even higher. Therefore, novel methods, e.g., scanning probe microscopy, should be developed for such the high-resolution diagnostics. The second purpose of this book is to explore the possibility of developing new methods for these diagnostics by utilizing local interaction between materials and electron, photon, atomic force, and so on. Conformation and structure of the materials of the mesoscopic system can be modified by enhancing the local interaction between the materials and electromagnetic field. This modification can suggest the possibility of novel nano-fabrication methods. The third purpose of this book is to explore the methods for such nano-fabrication."
Focusing on nanophotonics, which has been proposed by M. Ohtsu in 1993, this volume begins with theories for operation principles of characteristic nanophotonic devices and continues with novel optical near field phenomena for fabricating nanophotonic devices. Further topics include: unique properties of optical near fields and their applications to operating nanophotonic devices; and nanophotonic information and communications systems that can overcome the integration-density limit with ultra-low-power operation as well as unique functionalities. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.
This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics. Written for: Scientists, optical engineers and graduate students
Starting out with a review of the principles of nanophotonics, this
book covers a wide range of novel nanofabrication technologies. The
internationally recognized editor pioneered this field of research
and here he has gathered together a team of authors to highlight
the technical details and procedures for both discrete particle as
well as surface structure generation. They also illustrate the
application potential of different materials, including biological,
inorganic and artificial ones.
This unique monograph series "Progress in Nano-Electro Optics" reviews the results of advanced studies of electro-optics on the nanometric scale. This third volume covers the most recent topics of theoretical and experimental interest including classical and quantum optics, organic and inorganic material science and technology, surface science, spectroscopy, atom manipulation, photonics, and electronics. The first two volumes addressed the "Basics and Theory of Near Field Optics" (2002) and "Novel Devices and Atom Manipulation" (2003).
Novel Devices and Atom Manipulation, the second and concluding volume of Progress in Nano-Electro-Optics, focuses on applications to novel devices and atom manipulation. Each chapter is written by a leading scientists in the field. Part II addresses the latest developments in nano-optical techniques, dealing with topics such as: the reasons that the resolution of nano-electro-optical techniques extend beyond the diffraction limit; applications of excitonic polaritons to opto-electronic devices; instrumentation of near-field optical microscopy to study quantum confined systems; and atom manipulation by optical near-field techniques. Together with volume I (Basics and Theory of Near-Field Optics), these overviews are a valuable resource for engineers and scientists working in the field of nano-electro-optics
This volume focuses on the characterization of nano-optical materials and optical near-field interactions. It begins with the techniques for characterizing the magneto-optical Kerr effect and continues with methods to determine structural and optical properties in high-quality quantum wires with high spatial uniformity. Further topics include: near-field luminescence mapping in InGaN/GaN single quantum well structures in order to interpret the recombination mechanism in InGaN-based nano-structures; and theoretical treatment of the optical near field and optical near-field interactions, providing the basis for investigating the signal transport and associated dissipation in nano-optical devices. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.
This book presents the recent progress in the field of nanophotonics. It contains review-like chapters focusing on various but mutually related topics in nanophotonics written by the world's leading scientists. Following the elaboration of the idea of nanophotonics, much theoretical and experimental work has been carried out, and several novel photonic devices, high-resolution fabrication, highly efficient energy conversion, and novel information processing have been developed in these years. Novel theoretical models describing the nanometric light-matter interaction, nonequilibrium statistical mechanical models for photon breeding processes and near-field-assisted chemical reactions as well as light-matter interaction are also explained in this book. It describes dressed photon technology and its applications, including implementation of nanophotonic devices and systems, fabrication methods and performance characteristics of ultrathin, ultraflexible organic light-emitting diodes, organic solar cells and organic transistors.
This book focuses the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology, and advanced systems. It begins with a review of near-field excitation dynamics in molecules. Further topics include: wavelength up-converting a phonon-assisted excitation process with degenerate beams and non-degenerate beams in dye grains, a fabrication method of semiconductor quantum dots including self-assembly of InAs quantum dots based on the Stranski-Krastanov growth mode, single-nanotube spectroscopy and time-resolved spectroscopy for studying novel excitonic properties of single-walled carbon nanotubes. The striking features of ecxitons in the carbon nanotube, multiple-exciton states, and microfluidic and extended-nano fluidic techniques. These topics are reviewed by nine leading scientists. This overview is a variable resource for engineers and scientists working in the field of nanophotonics.
This book focuses on a novel phenomenon named photon breeding. It is applied to realizing light-emitting diodes and lasers made of indirect-transition-type silicon bulk crystals in which the light-emission principle is based on dressed photons. After presenting physical pictures of dressed photons and dressed-photon phonons, the principle of light emission by using dressed-photon phonons is reviewed. A novel phenomenon named photon breeding is also reviewed. Next, the fabrication and operation of light emitting diodes and lasers are described The role of coherent phonons in these devices is discussed. Finally, light-emitting diodes using other relevant crystals are described and other relevant devices are also reviewed.
When a photon meets a nanostructure, many interesting phenomena occur. This book aims at developing the theories and the applications of photon interactions with nanostructures. The contributors were all participants in the well-known Japanese national research project, "Near-Field Nano-Optics", which ran from 1997 to 2000. The book covers a wide range of disciplines in nano-optics, including the theoretical development of imaging-contrast mechanisms as a result of photon and nanomatter interactions, and discussions on different near-field nanoprobes. Applications of nano-optics to sensing, imaging, analysis, and the fabrication of nanostructures, such as molecules and quantum devices, are also discussed, with a collection of experimental examples.
This book focuses on the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology and advanced systems. It reviews light-emitting diodes and lasers made of silicon bulk crystals in which the light emission principle is based on dressed-photon-phonons. Further topics include: theoretical studies of optoelectronic properties of molecular condensates for organic solar cells and light-emitting devices, the basics of topological light beams together with their important properties for laser spectroscopy, spatially localized modes emerging in nonlinear discrete dynamic systems and theoretical methods to explore the dynamics of nanoparticles by the light-induced force of tailored light fields under thermal fluctuations. These topics are reviewed by leading scientists. This overview is a variable resource for engineers and scientists working in the field of nanophotonics.
This volume focuses on fundamental aspects of nano-electro-optics. Starting with fiber probes and related devices for generating and detecting the optical near-field with high efficiency and resolution, the next chapter addresses the modulation of an electron beam by optical near-fields. Further topics include: fluorescence spectroscopy, in which sample molecules are excited by the evanescent surface plasmon field close to metallic surfaces; spatially resolved near-field photoluminescence spectroscopy of semiconductor quantum dots, which will become an essential issue in future electro-optical devices and systems; and, finally, the quantum theory of the optical near-field. This latter theory accounts for all the essential features of the interaction between optical near-fields and nanomaterials, atoms and molecules. Together these overviews will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.
Intrinsic features of the optical near field open a new frontier in optical science and technology by finally overcoming the diffraction limit to reach nanometric dimensions. But this book goes beyond near-field optical microscopy to cover local spectroscopy, nanoscale optical processing and storage, quantum near-field optics, and atom manipulation. Near-Field Nano/Atom Optics and Technology provides the first complete and systematically compiled account of the science and technology required to generate the near field, and features applications including imaging of biological specimens and diagnostics for semiconductor nanomaterials and devices. This monograph will be invaluable to researchers who want to implement near-field technology in their own work, and it can also be used as a textbook for graduate or undergraduate students.
"The Theory and Applications of Nanophotonics Devices, Fabrication, and Systems" Coauthored by the developer of nanophotonics, Principles of Nanophotonics outlines physically intuitive concepts of the subject using a novel theoretical framework that differs from conventional wave optics. It probes far-reaching physical insights into the local electromagnetic interaction in the nanometric subsystem composed of electrons and photons. After reviewing the background, history, and current status of research and development in nanophotonics and related technologies, the book presents a unique theoretical model to describe the interactions among nanometric material systems via optical near-fields. It also evaluates a nonadiabatic fabrication process using this theoretical model. The authors then explore nanophotonic devices and fabrication techniques and provide examples of qualitative innovation. The final chapter looks at how the assembly of nanophotonic devices produces a nanophotonic system. "Realize the Great Potential of Nanophotonics" Nanophotonics is on its way to revolutionizing various applications in devices, fabrications, and information and communication systems. Promoting further exploration in the field, this book helps you understand the theory behind nanophotonics and how it can be applied to devices and systems.
Off-shell science deals with the quantum field in which the dispersion relation between energy and momentum is invalid. A typical example of such the quantum field is the dressed photon (DP) that creates by the interaction among photons, electrons, and phonons in a nano-particle. This field is complementary to the on-shell quantum field (photons in a macroscopic space). Off-Shell Applications in Nanophotonics: Dressed Photon Science and Technology reviews the experimental/theoretical studies and shows the route that should be taken to establish off-shell science in the future. A variety of phenomena originate from the DP, and phenomena analogous to them have been found among physical, chemical, and biological phenomena. This indicates that off-shell quantum fields are universal and essential constituent elements of nature. By noting this, readers will be able to use off-shell science to develop new technologies. This book presents i) the reasons why the off-shell scientific theory is required, ii) the nature of the dressed photon by presenting experimental results, iii) tentative theoretical description of the dressed photon, iv) disruptive innovations (nano-optical devices, nano-fabrication technology, energy conversion technology, and silicon light-emitting diodes/lasers), and v) genuine theoretical approaches (based on spatio-temporal vortex hydrodynamics, quantum probability, quantum measurement, and micro-macro duality). It will appeal to materials scientists, engineers and physicists working in the areas of optics and photonics.
This book presents the recent progress in the field of nanophotonics. It contains review-like chapters focusing on various but mutually related topics in nanophotonics written by the world's leading scientists. Following the elaboration of the idea of nanophotonics, much theoretical and experimental work has been carried out, and several novel photonic devices, high-resolution fabrication, highly efficient energy conversion, and novel information processing have been developed in these years. Novel theoretical models describing the nanometric light-matter interaction, nonequilibrium statistical mechanical models for photon breeding processes and near-field-assisted chemical reactions as well as light-matter interaction are also explained in this book. It describes dressed photon technology and its applications, including implementation of nanophotonic devices and systems, fabrication methods and performance characteristics of ultrathin, ultraflexible organic light-emitting diodes, organic solar cells and organic transistors.
This book focuses on a novel phenomenon named photon breeding. It is applied to realizing light-emitting diodes and lasers made of indirect-transition-type silicon bulk crystals in which the light-emission principle is based on dressed photons. After presenting physical pictures of dressed photons and dressed-photon phonons, the principle of light emission by using dressed-photon phonons is reviewed. A novel phenomenon named photon breeding is also reviewed. Next, the fabrication and operation of light emitting diodes and lasers are described The role of coherent phonons in these devices is discussed. Finally, light-emitting diodes using other relevant crystals are described and other relevant devices are also reviewed.
Authored by the developer of dressed photon science and technology as well as nanophotonics, this book outlines concepts of the subject using a novel theoretical framework that differs from conventional wave optics. It provides a quantum theoretical description of optical near fields and related problems that puts matter excitation such as electronic and vibrational ones on an equal footing with photons. By this description, optical near fields are interpreted as quasi-particles and named dressed photons which carry the material excitation energy in a nanometric space. The author then explores novel nanophotonic devices, fabrications, and energy conversion based on the theoretical picture of dressed photons. Further, this book looks at how the assembly of nanophotonic devices produces information and communication systems. Dressed photon science and technology is on its way to revolutionizing various applications in devices, fabrications, and systems. Promoting further exploration in the field, this book presents physically intuitive concepts, theories, and technical details for students, engineers, and scientists engaged in research and development in dressed photon science and technology as well as nanophotonics. |
You may like...
Die Maan Is Swart - Gedigte Van Adam…
Adam Small, Ronelda Kamfer
Paperback
(1)
|