Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 28 matches in All Departments
This new book considers state-of-the-art developments and research in polymer science, such as advanced polymers, composites and nanocomposites, and the role of polymers in the progress of green chemistry and medicine. Taking an interdisciplinary approach, the book is divided into sections that discuss Polymer Synthesis and Application, Materials and Properties, Composites and Nanostructures, Sustainable and Green Chemistry, and Constitutional Systems for Medicine. Polymers are studied in fields as diverse as polymer science (polymer chemistry and polymer physics), biophysics, biochemistry, and more generally in materials science and engineering. Polymer matrix composites (PMCs) and nanocomposites (PMNCs) are widely used in high-tech material structures such as in the automotive, marine, and aerospace industries. Their impact on the physical and mechanical performance is mainly due to their reinforcing agents, fibers (glass, carbon, aramid) or nanofibers (MMT, CNTs, graphene, etc.) but also to a perfect mastery of the matrix/reinforcement interface. The book will be valuable for academics, scientists, engineers, and medical technologists of institutes, research centers, and universities who are involved in the field of macromolecular chemistry and polymeric materials.
This book reviews several domains of polymer science, especially new trends in polymerization synthesis, physical-chemical properties, and inorganic systems. Composites and nanocomposites are also covered in this book, emphasizing nanotechnologies and their impact on the enhancement of physical and mechanical properties of these new materials. Kinetics and simulation are discussed and also considered as promising techniques for achieving chemistry and predicting physical property goals. This book presents a selection of interdisciplinary papers on the state of knowledge of each topic under consideration through a combination of overviews and original unpublished research.
This volume reflects the huge breadth and diversity in research and the application of industrial and engineering chemistry and cheminformatics. The book presents cutting-edge research developments and new insights that emphasize the vibrancy of industrial and engineering chemistry and cheminformatics today. The first section of the book focuses on new insights in engineering chemistry while the second part looks at the promising future and novel approaches in chemical informatics, which has vast implications for industrial and pharmaceutical applications. Several chapters examine various industrial processes for emerging materials and determine practical use under a wide range of conditions, helping to establish what is needed to produce a new generation of materials.
This book provides innovative chapters on the growth of educational, scientific, and industrial research activities among chemists, biologists, and polymer and chemical engineers and provides a medium for mutual communication between international academia and the industry. It presents significant research and reviews reporting new methodologies and important applications in the fields of industrial chemistry, industrial polymers and biotechnology as well as includes the latest coverage of chemical databases and the development of new computational methods and efficient algorithms for chemical software and polymer engineering.
This new volume focuses on different aspects of composite systems that are associated with research and development, helping to bridge the gap between classical analysis and modern real-life applications. The chapters look at the experimental and theoretical aspects of composite materials, regarding preparation, processing, design, properties, and practical implications. It also presents recent advancements, research, and development prospects of advanced composite materials that provide new solutions for advanced technologies.
High-Performance Polymers for Engineering-Based Composites presents a selection of investigations and innovative research in polymer chemistry and advanced materials. The book includes case studies in the field of nanocomposites. The volume provides coverage of new research in polymer science and engineering with applications in chemical engineering, materials science, and chemistry. In addition to synthetic polymer chemistry, it also looks at the properties of polymers in various states (solution, melt, solid). The chapters provide a survey of the important categories of polymers including commodity thermoplastics and fibers, elastomers and thermosets, and engineering and specialty polymers. Basic polymer processing principles are explained as well as in-depth descriptions of the latest polymer applications in different industrial sectors. This new book reviews the field's current state and emerging advances. With contributions from experts from both the industry and academia, this book presents the latest developments in polymer products and chemical processes.
Carbon materials play a significant role in the development of alternative clean and sustainable energy technologies. This new volume focuses on the new applications of different carbon nanomaterials and graphene-carbon-nanotube hybrids for energy generation, energy storage, and energy conversion. It presents a comprehensive overview of recent developments on carbon-based nanomaterials with a focus on sustainable and clean energy applications. With chapters written by the leading academicians and researchers working in the field, the volume explores state-of-the-art developments using both commercially available and emerging materials and their potential applications for energy storage and energy harvesting.
This volume reflects the huge breadth and diversity in research and the application of industrial and engineering chemistry and cheminformatics. The book presents cutting-edge research developments and new insights that emphasize the vibrancy of industrial and engineering chemistry and cheminformatics today. The first section of the book focuses on new insights in engineering chemistry while the second part looks at the promising future and novel approaches in chemical informatics, which has vast implications for industrial and pharmaceutical applications. Several chapters examine various industrial processes for emerging materials and determine practical use under a wide range of conditions, helping to establish what is needed to produce a new generation of materials.
In this important volume, the structures and functions of these advanced polymer and composite systems are evaluated with respect to improved or novel performance, and the potential implications of those developments for the future of polymer-based composites and multifunctional materials are discussed. It focuses exclusively on the latest research related to polymer and composite materials, especially new trends in frontal polymerization and copolymerization synthesis, functionalization of polymers, physical properties, and hybrid systems. Several chapters are devoted to composites and nanocomposites.
Presents updated information in the field of biodegradable biopolymers Provides an up-to-date summary of the varying market applications of biopolymers characterized by biodegradability and sustainability Includes case studies that illustrate the sustainable development process from a materials perspective
This book provides innovative chapters on the growth of educational, scientific, and industrial research activities among chemists, biologists, and polymer and chemical engineers and provides a medium for mutual communication between international academia and the industry. It presents significant research and reviews reporting new methodologies and important applications in the fields of industrial chemistry, industrial polymers and biotechnology as well as includes the latest coverage of chemical databases and the development of new computational methods and efficient algorithms for chemical software and polymer engineering.
In this important volume, the structures and functions of these advanced polymer and composite systems are evaluated with respect to improved or novel performance, and the potential implications of those developments for the future of polymer-based composites and multifunctional materials are discussed. It focuses exclusively on the latest research related to polymer and composite materials, especially new trends in frontal polymerization and copolymerization synthesis, functionalization of polymers, physical properties, and hybrid systems. Several chapters are devoted to composites and nanocomposites.
This book covers many important aspects of applied chemistry and chemical engineering, focusing on three main aspects: principles, methodology and evaluation methods. It presents a selection of chapters on recent developments of theoretical, mathematical, and computational conceptions, as well as chapters on modeling and simulation of specific research themes covering applied chemistry and chemical engineering. This book attempts to bridge the gap between classical analysis and modern applications. Covering a selection of topics within the field of applied chemistry and chemical engineering, the book is divided into several parts: polymer chemistry and technology bioorganic and biological chemistry nanoscale technology selected topics This book is the second of the two-volume series Applied Chemistry and Chemical Engineering. The first volume is Volume 1: Mathematical and Analytical Techniques.
Understanding mathematical modeling is fundamental in chemical engineering. This book reviews, introduces, and develops the mathematical models that are most frequently encountered in sophisticated chemical engineering domains. The volume provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in the production of nanofibers. These chapters discuss the general components of the modeling process and the evolutionary nature of successful model building in the electrospinning process. Electrospinning is the most versatile technique for the preparation of continuous nanofibers obtained from numerous materials. This section of book summarizes the state-of-the art in electrospinning as well as updates on theoretical aspects and applications. Part 2 of the book presents a selection of special topics on issues in applied chemistry and chemical engineering, including nanocomposite coating processes by electrocodeposition method, entropic factors conformational interactions, and the application of artificial neural network and meta-heuristic algorithms. This volume covers a wide range of topics in mathematical modeling, computational science, and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines.
Applied Chemistry and Chemical Engineering, Volume 4: Experimental Techniques and Methodical Developments provides a detailed yet easy-to-follow treatment of various techniques useful for characterizing the structure and properties of engineering materials. This timely volume provides an overview of new methods and presents experimental research in applied chemistry using modern approaches. Each chapter describes the principle of the respective method as well as the detailed procedures of experiments with examples of actual applications and then goes on to demonstrate the advantage and disadvantages of each physical technique. Thus, readers will be able to apply the concepts as described in the book to their own experiments. The book is broken into several subsections: Polymer Chemistry and Technology Computational Approaches Clinical Chemistry and Bioinformatics Special Topics This volume presents research and reviews and information on implementing and sustaining interdisciplinary studies in science, technology, engineering, and mathematics.
This volume, Applied Chemistry and Chemical Engineering, Volume 5: Research Methodologies in Modern Chemistry and Applied Science, is designed to fulfill the requirements of scientists and engineers who wish to be able to carry out experimental research in chemistry and applied science using modern methods. Each chapter describes the principle of the respective method, as well as the detailed procedures of experiments with examples of actual applications. Thus, readers will be able to apply the concepts as described in the book to their own experiments. This book traces the progress made in this field and its sub-fields and also highlight some of the key theories and their applications and will be a valuable resource for chemical engineers in Materials Science and others.
Increasing interest in lightweight and high-performance materials is leading to significant research activity in the area of polymers and composites. One recent focus is to develop multifunctional materials that have more than one property tailored as to the specified design requirements, in addition to achieving low density. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancement in the science and technology of high-performance functional polymers and composites. This volume presents a selection of new approaches in the field of composites and nanomaterials, polymer synthesis and applications, and materials and their properties. Some composites/nanocomposites and interfaces are explored as well, some with medical applications. The authors also look at simulations and modeling, synthesis involving photochemistry, self-assembled hydrogels, and sol-gel processing.
New fields of science and technology call for new materials with valuable performance characteristics. Long-term resistance to such temperatures can be found only in polymers with chains made up of thermostable fragments. Particularly interesting in this respect are elementorganic polymers with inorganic and organo-inorganic molecular chains. Elementorganic polymers are not only highly thermostable, but also perform well under low temperatures, sunlight, humidity, weather, etc. Thus, these polymers (especially silicones) are widely and effectively used in the electrical, radio, coal, mechanical rubber, aircraft, metallurgical, textile and other industries. They are of great utility not only in industry, but also in households and in medicine, where their merits can hardly be overestimated. The need to publish this book arose with the scientific and technical developments of the last decade, the reconstruction and technical renovation of existing factories, as well as fundamental changes in some syntheses of elementorganic monomers and polymers. Moreover, nowadays it is essential to train highly-skilled chemical engineers with a comprehensive knowledge of current chemistry, of the production technology of elementorganic monomers and polymers, and of their characteristics and applications.
This new book brings together innovative research, new concepts, and novel developments in the application of informatics tools for applied chemistry and computer science. It presents a modern approach to modeling and calculation and also looks at experimental design in applied chemistry and chemical engineering. The volume discusses the developments of advanced chemical products and respective tools to characterize and predict the chemical material properties and behavior. Providing numerous comparisons of different methods with one another and with different experiments, not only does this book summarize the classical theories, but it also exhibits their engineering applications in response to the current key issues. Recent trends in several areas of chemistry and chemical engineering science, which have important application to practice, are discussed. Applied Chemistry and Chemical Engineering: Volume 1: Mathematical and Analytical Techniques provides valuable information for chemical engineers and researchers as well as for graduate students. It demonstrates the progress and promise for developing chemical materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications. Volume 2 will focus principles and methodologies in applied chemistry and chemical engineering.
This new volume focuses on different aspects of composite systems that are associated with research and development, helping to bridge the gap between classical analysis and modern real-life applications. The chapters look at the experimental and theoretical aspects of composite materials, regarding preparation, processing, design, properties, and practical implications. It also presents recent advancements, research, and development prospects of advanced composite materials that provide new solutions for advanced technologies.
High-Performance Polymers for Engineering-Based Composites presents a selection of investigations and innovative research in polymer chemistry and advanced materials. The book includes case studies in the field of nanocomposites. The volume provides coverage of new research in polymer science and engineering with applications in chemical engineering, materials science, and chemistry. In addition to synthetic polymer chemistry, it also looks at the properties of polymers in various states (solution, melt, solid). The chapters provide a survey of the important categories of polymers including commodity thermoplastics and fibers, elastomers and thermosets, and engineering and specialty polymers. Basic polymer processing principles are explained as well as in-depth descriptions of the latest polymer applications in different industrial sectors. This new book reviews the field's current state and emerging advances. With contributions from experts from both the industry and academia, this book presents the latest developments in polymer products and chemical processes.
Modification of known polymers, making polymer blends, polymer composites and filled polymers is vital for the progress of modern industry. This monograph is devoted to modification reactions of oligomethylhydridesiloxanes, which is significant in the modification processes.
This volume, Applied Chemistry and Chemical Engineering, Volume 5: Research Methodologies in Modern Chemistry and Applied Science, is designed to fulfill the requirements of scientists and engineers who wish to be able to carry out experimental research in chemistry and applied science using modern methods. Each chapter describes the principle of the respective method, as well as the detailed procedures of experiments with examples of actual applications. Thus, readers will be able to apply the concepts as described in the book to their own experiments. This book traces the progress made in this field and its sub-fields and also highlight some of the key theories and their applications and will be a valuable resource for chemical engineers in Materials Science and others.
This book covers many important aspects of applied chemistry and chemical engineering, focusing on three main aspects: principles, methodology and evaluation methods. It presents a selection of chapters on recent developments of theoretical, mathematical, and computational conceptions, as well as chapters on modeling and simulation of specific research themes covering applied chemistry and chemical engineering. This book attempts to bridge the gap between classical analysis and modern applications. Covering a selection of topics within the field of applied chemistry and chemical engineering, the book is divided into several parts: polymer chemistry and technology bioorganic and biological chemistry nanoscale technology selected topics This book is the second of the two-volume series Applied Chemistry and Chemical Engineering. The first volume is Volume 1: Mathematical and Analytical Techniques.
Understanding mathematical modeling is fundamental in chemical engineering. This book reviews, introduces, and develops the mathematical models that are most frequently encountered in sophisticated chemical engineering domains. The volume provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in the production of nanofibers. These chapters discuss the general components of the modeling process and the evolutionary nature of successful model building in the electrospinning process. Electrospinning is the most versatile technique for the preparation of continuous nanofibers obtained from numerous materials. This section of book summarizes the state-of-the art in electrospinning as well as updates on theoretical aspects and applications. Part 2 of the book presents a selection of special topics on issues in applied chemistry and chemical engineering, including nanocomposite coating processes by electrocodeposition method, entropic factors conformational interactions, and the application of artificial neural network and meta-heuristic algorithms. This volume covers a wide range of topics in mathematical modeling, computational science, and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. |
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|