Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
The area of data analysis has been greatly affected by our computer age. For example, the issue of collecting and storing huge data sets has become quite simplified and has greatly affected such areas as finance and telecommunications. Even non-specialists try to analyze data sets and ask basic questions about their structure. One such question is whether one observes some type of invariance with respect to scale, a question that is closely related to the existence of long-range dependence in the data. This important topic of long-range dependence is the focus of this unique work, written by a number of specialists on the subject. The topics selected should give a good overview from the probabilistic and statistical perspective. Included will be articles on fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, and prediction for long-range dependence sequences. For those graduate students and researchers who want to use the methodology and need to know the "tricks of the trade," there will be a special section called "Mathematical Techniques." Topics in the first part of the book are covered from probabilistic and statistical perspectives and include fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, prediction for long-range dependence sequences. The reader is referred to more detailed proofs if already found in the literature. The last part of the book is devoted to applications in the areas of simulation, estimation and wavelet techniques, traffic in computer networks, econometry and finance, multifractal models, and hydrology. Diagrams and illustrations enhance the presentation. Each article begins with introductory background material and is accessible to mathematicians, a variety of practitioners, and graduate students. The work serves as a state-of-the art reference or graduate seminar text.
A self-contained and probability-oriented introduction to the theory of lattice of partitions, with a unique software implementation that makes our book an ideal introduction to the field A complete and self-contained combinatorial analysis of cumulants and diagram formulae, unique in its genre An introduction to Wiener chaos, and a new combinatorial interpretation of recently proved limit theorems The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which M bius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae
The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Moebius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.
In the last twenty years extensive research has been devoted to a better understanding of the stable and other closely related infinitely divisible mod els. Stamatis Cambanis, a distinguished educator and researcher, played a special leadership role in the development of these research efforts, particu larly related to stable processes from the early seventies until his untimely death in April '95. This commemorative volume consists of a collection of research articles devoted to reviewing the state of the art of this and other rapidly developing research and to explore new directions of research in these fields. The volume is a tribute to the Life and Work of Stamatis by his students, friends, and colleagues whose personal and professional lives he has deeply touched through his generous insights and dedication to his profession. Before the idea of this volume was conceived, two conferences were held in the memory of Stamatis. The first was organized by the University of Athens and the Athens University of Economics and was held in Athens during December 18-19, 1995. The second was a significant part of a Spe cial IMS meeting held at the campus of the University of North Carolina at Chapel Hill during October 17-19, 1996. It is the selfless effort of sev eral people that brought about these conferences. We believe that this is an appropriate place to acknowledge their effort; and on behalf of all the participants, we extend sincere thanks to all these persons."
This IMA Volume in Mathematics and its Applications NEW DIRECTIONS IN TIME SERIES ANALYSIS, PART II is based on the proceedings of the IMA summer program "New Directions in Time Series Analysis. " We are grateful to David Brillinger, Peter Caines, John Geweke, Emanuel Parzen, Murray Rosenblatt, and Murad Taqqu for organizing the program and we hope that the remarkable excitement and enthusiasm of the participants in this interdisciplinary effort are communicated to the reader. A vner Friedman Willard Miller, Jr. PREFACE Time Series Analysis is truly an interdisciplinary field because development of its theory and methods requires interaction between the diverse disciplines in which it is applied. To harness its great potential, strong interaction must be encouraged among the diverse community of statisticians and other scientists whose research involves the analysis of time series data. This was the goal of the IMA Workshop on "New Directions in Time Series Analysis. " The workshop was held July 2-July 27, 1990 and was organized by a committee consisting of Emanuel Parzen (chair), David Brillinger, Murray Rosenblatt, Murad S. Taqqu, John Geweke, and Peter Caines. Constant guidance and encouragement was provided by Avner Friedman, Director of the IMA, and his very helpful and efficient staff. The workshops were organized by weeks. It may be of interest to record the themes that were announced in the IMA newsletter describing the workshop: l.
Part of a two volume set based on a recent IMA program of the same name. The goal of the program and these books is to develop a community of statistical and other scientists kept up-to-date on developments in this quickly evolving and interdisciplinary field. Consequently, these books present recent material by distinguished researchers. Topics discussed in Part I include nonlinear and non- Gaussian models and processes (higher order moments and spectra, nonlinear systems, applications in astronomy, geophysics, engineering, and simulation) and the interaction of time series analysis and statistics (information model identification, categorical valued time series, nonparametric and semiparametric methods). Self-similar processes and long-range dependence (time series with long memory, fractals, 1/f noise, stable noise) and time series research common to engineers and economists (modeling of multivariate and possibly non-stationary time series, state space and adaptive methods) are discussed in Part II.
This book provides a self-contained presentation on the structure of a large class of stable processes, known as self-similar mixed moving averages. The authors present a way to describe and classify these processes by relating them to so-called deterministic flows. The first sections in the book review random variables, stochastic processes, and integrals, moving on to rigidity and flows, and finally ending with mixed moving averages and self-similarity. In-depth appendices are also included. This book is aimed at graduate students and researchers working in probability theory and statistics.
This modern and comprehensive guide to long-range dependence and self-similarity starts with rigorous coverage of the basics, then moves on to cover more specialized, up-to-date topics central to current research. These topics concern, but are not limited to, physical models that give rise to long-range dependence and self-similarity; central and non-central limit theorems for long-range dependent series, and the limiting Hermite processes; fractional Brownian motion and its stochastic calculus; several celebrated decompositions of fractional Brownian motion; multidimensional models for long-range dependence and self-similarity; and maximum likelihood estimation methods for long-range dependent time series. Designed for graduate students and researchers, each chapter of the book is supplemented by numerous exercises, some designed to test the reader's understanding, while others invite the reader to consider some of the open research problems in the field today.
|
You may like...
Brain Games - Large Print Bible Word…
Publications International Ltd, Brain Games
Spiral bound
Loss - Poems To Better Weather The Many…
Donna Ashworth
Hardcover
(1)
|