Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Bioinformatics is an evolving field that is gaining popularity due to genomics, proteomics and other high-throughput biological methods. The function of bioinformatic scientists includes biological data storage, retrieval and in silico analysis of the results from large-scale experiments. This requires a grasp of knowledge mining algorithms, a thorough understanding of biological knowledge base, and the logical relationship of entities that describe a process or the system. Bioinformatics researchers are required to be trained in multidisciplinary fields of biology, mathematics and computer science. Currently the requirements are satisfied by ad hoc researchers who have specific skills in biology or mathematics/computer science. But the learning curve is steep and the time required to communicate using domain specific terms is becoming a major bottle neck in scientific productivity. This workbook provides hands-on experience which has been lacking for qualified bioinformatics researchers.
This new edition continues to illustrate the power of biological data in knowledge discovery. It describes biological data types and representations with examples for creating a workflow in bioinformation discovery. The concepts in knowledge discovery from data are illustrated using line diagrams. The principles and concepts in knowledge discovery are used for the development of prediction models for simulations of biological reactions and events. Advanced topics in molecular evolution and cellular & molecular biology are addressed using bioinformation gleaned through discovery. Each chapter contains approximately 10 exercises for practice. This will help students to expand their problem solving skills in Bioinformation Discovery. In this new edition, there are three new chapters covering single nucleotide polymorphism, genes, proteins and disease, and protein functions driven by surface electrostatics.
This new edition continues to illustrate the power of biological data in knowledge discovery. It describes biological data types and representations with examples for creating a workflow in bioinformation discovery. The concepts in knowledge discovery from data are illustrated using line diagrams. The principles and concepts in knowledge discovery are used for the development of prediction models for simulations of biological reactions and events. Advanced topics in molecular evolution and cellular & molecular biology are addressed using bioinformation gleaned through discovery. Each chapter contains approximately 10 exercises for practice. This will help students to expand their problem solving skills in Bioinformation Discovery. In this new edition, there are three new chapters covering single nucleotide polymorphism, genes, proteins and disease, and protein functions driven by surface electrostatics.
Bioinformation Discovery illustrates the power of biological data in knowledge discovery. It describes biological data types and representations with examples for creating a workflow in Bioinformation discovery. The concepts in knowledge discovery from data are illustrated using line diagrams. The principles and concepts in knowledge discovery are used for the development of prediction models for simulations of biological reactions and events. Advanced topics in molecular evolution and cellular & molecular biology are addressed using Bioinformation gleaned through discovery. Each chapter contains approximately 10 exercises for practice. This will help students to expand their problem solving skills in Bioinformation Discovery. Each chapter concludes with a number of good problem sets to test mastery of the material.
Global Virology, Volume III: Virology in the 21st Century examines work that has been undertaken, or is planned, in several fields of virology, in an effort to promote current and future work, research, and health. Fields and methods addressed include virology, immunology, space research, astrovirology/astrobiology, plasmids, swarm intelligence, bioinformatics, data-mining, machine learning, neural networks, critical equations, and advances in biohazard biocontainment. Novel and forward-looking methods, techniques, and approaches in research and development are presented by experts in the field.
Bioinformatics is an evolving field that is gaining popularity due to genomics, proteomics and other high-throughput biological methods. The function of bioinformatic scientists includes biological data storage, retrieval and in silico analysis of the results from large-scale experiments. This requires a grasp of knowledge mining algorithms, a thorough understanding of biological knowledge base, and the logical relationship of entities that describe a process or the system. Bioinformatics researchers are required to be trained in multidisciplinary fields of biology, mathematics and computer science. Currently the requirements are satisfied by ad hoc researchers who have specific skills in biology or mathematics/computer science. But the learning curve is steep and the time required to communicate using domain specific terms is becoming a major bottle neck in scientific productivity. This workbook provides hands-on experience which has been lacking for qualified bioinformatics researchers.
This book describes the fundamental physical, chemical, molecular and biological aspects of proteins binding to one another in cellular biology. PPI is a common phenomenon in cell and molecular biology events. The networks of PPI describe cellular function in both unicellular and multi-cellular organisms. Homo complexes (dimers of identical monomers) or hetero complexes (dimers of non-identical monomers) are involved in PPI. These complexes are common in catalysis, regulation and structural assembly. However, the molecular principles of protein interactions are difficult to understand due to the geometrical and chemical characteristics of proteins. The challenge today is to identify interaction partners and sites from sequence and/or structures. This book describes the principles (physics and chemistry) of PPI and protein interfaces to develop models for PPI predictions.
|
You may like...
|