0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Smart External Stimulus-Responsive Nanocarriers for Drug and Gene Delivery (Paperback): Mahdi Karimi, Parham Sahandi Zangabad,... Smart External Stimulus-Responsive Nanocarriers for Drug and Gene Delivery (Paperback)
Mahdi Karimi, Parham Sahandi Zangabad, Amir Ghasemi, Michael R. Hamblin
R1,277 Discovery Miles 12 770 Ships in 10 - 15 working days

The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo, this can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to externally applied stimuli that usually involve application of physical energy. This physical energy can be applied from outside the body and can either cause cargo release, or can activate the nanostructure to be cytotoxic, or both. The stimuli covered include light of various wavelengths (ultraviolet, visible or infrared), temperature (increased or decreased), magnetic fields (used to externally manipulate nanostructures and to activate them), ultrasound, and electrical and mechanical forces. Finally we discuss the issue of nanotoxicology and the future scope of the field.

Smart Internal Stimulus-Responsive Nanocarriers for Drug and Gene Delivery (Hardcover): Mahdi Karimi, Parham Sahandi Zangabad,... Smart Internal Stimulus-Responsive Nanocarriers for Drug and Gene Delivery (Hardcover)
Mahdi Karimi, Parham Sahandi Zangabad, Amir Ghasemi, Michael R. Hamblin
R3,158 Discovery Miles 31 580 Ships in 10 - 15 working days

The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo. This can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to internal stimuli that are intrinsic to the target site. These stimuli are specific to the cell type, tissue or organ type, or to the disease state (cancer, infection, inflammation etc). pH-responsive nanostructures can be used for cargo release in acidic endosomal compartments, in the lower pH of tumors, and for specific oral delivery either to the stomach or intestine. Nanocarriers can be designed to be substrates of a wide-range of enzymes that are over-expressed at disease sites. Oxidation and reduction reactions can be taken advantage of in smart nanocarriers by judicious molecular design. Likewise, nanocarriers can be designed to respond to a range of specific biomolecules that may occur at the target site. In this volume we also cover dual and multi-responsive systems that combine stimuli that could be either internal or external.

Smart External Stimulus-Responsive Nanocarriers for Drug and Gene Delivery (Hardcover): Mahdi Karimi, Parham Sahandi Zangabad,... Smart External Stimulus-Responsive Nanocarriers for Drug and Gene Delivery (Hardcover)
Mahdi Karimi, Parham Sahandi Zangabad, Amir Ghasemi, Michael R. Hamblin
R3,171 Discovery Miles 31 710 Ships in 10 - 15 working days

The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo, this can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to externally applied stimuli that usually involve application of physical energy. This physical energy can be applied from outside the body and can either cause cargo release, or can activate the nanostructure to be cytotoxic, or both. The stimuli covered include light of various wavelengths (ultraviolet, visible or infrared), temperature (increased or decreased), magnetic fields (used to externally manipulate nanostructures and to activate them), ultrasound, and electrical and mechanical forces. Finally we discuss the issue of nanotoxicology and the future scope of the field.

Smart Internal Stimulus-Responsive Nanocarriers for Drug and Gene Delivery (Paperback): Mahdi Karimi, Parham Sahandi Zangabad,... Smart Internal Stimulus-Responsive Nanocarriers for Drug and Gene Delivery (Paperback)
Mahdi Karimi, Parham Sahandi Zangabad, Amir Ghasemi, Michael R. Hamblin
R1,277 Discovery Miles 12 770 Ships in 10 - 15 working days

The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo. This can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to internal stimuli that are intrinsic to the target site. These stimuli are specific to the cell type, tissue or organ type, or to the disease state (cancer, infection, inflammation etc). pH-responsive nanostructures can be used for cargo release in acidic endosomal compartments, in the lower pH of tumors, and for specific oral delivery either to the stomach or intestine. Nanocarriers can be designed to be substrates of a wide-range of enzymes that are over-expressed at disease sites. Oxidation and reduction reactions can be taken advantage of in smart nanocarriers by judicious molecular design. Likewise, nanocarriers can be designed to respond to a range of specific biomolecules that may occur at the target site. In this volume we also cover dual and multi-responsive systems that combine stimuli that could be either internal or external.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Lucky Lubricating Clipper Oil (100ml)
R49 R29 Discovery Miles 290
Baby Dove Soap Bar Rich Moisture 75g
R20 Discovery Miles 200
Sharp EL-W506T Scientific Calculator…
R599 R560 Discovery Miles 5 600
Conforming Bandage
R5 Discovery Miles 50
Go Glam U-Nique Nail Salon Basic…
R699 R329 Discovery Miles 3 290
Fine Living E-Table (Black | White)
 (7)
R319 R199 Discovery Miles 1 990
Estee Lauder Beautiful Belle Eau De…
R2,241 R1,652 Discovery Miles 16 520
Merry Christmas
Mariah Carey, Walter Afanasieff, … CD R122 R112 Discovery Miles 1 120
Kiddylicious Cheese Straws (12g)
 (2)
R28 R24 Discovery Miles 240
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300

 

Partners