Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
It is now more than ten years since Dr. Alec Jeffreys (now Professor Sir Alec Jeffreys, FRS) reported in Nature that the investigation of certain minisatellite regions in the human genome could produce what he termed DNA fingerprints and provide useful information in the fields of paternity testing and forensic analysis. Since that time we have witnessed a revolution in the field of forensic identification. A total change of technology, from serological or electrophoretic analysis of protein polymorphisms to direct investigation of the underlying DNA polymorphisms has occurred in a short space of time. In addition, the evolution and development of the DNA systems themselves has been rapid and spectacular. In the last decade we have progressed from the multilocus DNA fing- prints, through single locus systems based on the same Southern blot RFLP technology, to a host of systems based on the PCR technique. These include Allele Specific Oligonucleotide (ASO)-primed systems detected by dot blots, the "binary" genotypes produced by mapping variations within VNTR repeats demonstrated by minisatellite variant repeat (MVR) analysis, and yet other fragment-length polymorphisms in the form of Short Tandem Repeat (STR) loci. Hand in hand with the increasing range of systems available has been the development of new instrumentation to facilitate their analysis and allow us to explore the possibilities of high volume testing in the form of mass scre- ing and offender databases.
It is now more than ten years since Dr. Alec Jeffreys (now Professor Sir Alec Jeffreys, FRS) reported in Nature that the investigation of certain minisatellite regions in the human genome could produce what he termed DNA fingerprints and provide useful information in the fields of paternity testing and forensic analysis. Since that time we have witnessed a revolution in the field of forensic identification. A total change of technology, from serological or electrophoretic analysis of protein polymorphisms to direct investigation of the underlying DNA polymorphisms has occurred in a short space of time. In addition, the evolution and development of the DNA systems themselves has been rapid and spectacular. In the last decade we have progressed from the multilocus DNA fing- prints, through single locus systems based on the same Southern blot RFLP technology, to a host of systems based on the PCR technique. These include Allele Specific Oligonucleotide (ASO)-primed systems detected by dot blots, the "binary" genotypes produced by mapping variations within VNTR repeats demonstrated by minisatellite variant repeat (MVR) analysis, and yet other fragment-length polymorphisms in the form of Short Tandem Repeat (STR) loci. Hand in hand with the increasing range of systems available has been the development of new instrumentation to facilitate their analysis and allow us to explore the possibilities of high volume testing in the form of mass scre- ing and offender databases.
|
You may like...
Westworld - Season 4 - The Choice
Evan Rachel Wood, Thandiwe Newton, …
DVD
R371
Discovery Miles 3 710
|