![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This monograph focuses on the construction of regression models with linear and non-linear constrain inequalities from the theoretical point of view. Unlike previous publications, this volume analyses the properties of regression with inequality constrains, investigating the flexibility of inequality constrains and their ability to adapt in the presence of additional a priori information The implementation of inequality constrains improves the accuracy of models, and decreases the likelihood of errors. Based on the obtained theoretical results, a computational technique for estimation and prognostication problems is suggested. This approach lends itself to numerous applications in various practical problems, several of which are discussed in detail The book is useful resource for graduate students, PhD students, as well as for researchers who specialize in applied statistics and optimization. This book may also be useful to specialists in other branches of applied mathematics, technology, econometrics and finance
This book is devoted to the study and optimization of spatiotemporal stochastic processes, that is, processes which develop simultaneously in space and time under random influences. These processes are seen to occur almost everywhere when studying the global behavior of complex systems, including: - Physical and technical systems - Population dynamics - Neural networks - Computer and telecommunication networks - Complex production networks - Flexible manufacturing systems - Logistic networks and transportation systems -Environmental engineering Climate modelling and prediction Earth surface models Classical stochastic dynamic optimization forms the framework of the book. Taken as a whole, the project undertaken in the book is to establish optimality or near-optimality for Markovian policies in the control of spatiotemporal Markovian processes. The authors apply this general principle to different frameworks of Markovian systems and processes. Depending on the structure of the systems and the surroundings of the model classes the authors arrive at different levels of simplicity for the policy classes which encompass optimal or nearly optimal policies. A set of examples accompanies the theoretical findings, and these examples should demonstrate some important application areas for the theorems discussed.
This book contains problems of stochastic optimization and identification. Results concerning uniform law of large numbers, convergence of approximate estimates of extreme points, as well as empirical estimates of functionals with probability 1 and in probability are presented. Audience: Specialists in stochastic optimization and estimations, postgraduate students, and graduate students studying such topics
This book contains problems of stochastic optimization and identification. Results concerning uniform law of large numbers, convergence of approximate estimates of extreme points, as well as empirical estimates of functionals with probability 1 and in probability are presented. Audience: Specialists in stochastic optimization and estimations, postgraduate students, and graduate students studying such topics
|
You may like...
Kagiso Reader: Matsatsi a matswalo…
Barbara Coombe, Heather Moore, …
Paperback
R85
Discovery Miles 850
Kagiso Reader: Ga ke e hwetse (NCS…
Barbara Coombe, Heather Moore, …
Paperback
R73
Discovery Miles 730
Krok En Dil: Vlak 3 - Boek 1-10
Jaco Jacobs, Nadia du Plessis
Paperback
Kagiso Reader: Kgang ya ga nkoko (NCS…
Barbara Coombe, Heather Moore, …
Paperback
R81
Discovery Miles 810
|