Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The series Structure and Bonding publishes critical reviews on
topics of research concerned with chemical structure and bonding.
The scope of the series spans the entire Periodic Table and
addresses structure and bonding issues associated with all of the
elements. It also focuses attention on new and developing areas of
modern structural and theoretical chemistry such as nanostructures,
molecular electronics, designed molecular solids, surfaces, metal
clusters and supramolecular structures. Physical and spectroscopic
techniques used to determine, examine and model structures fall
within the purview of Structure and Bonding to the extent that the
focus is on the scientific results obtained and not on specialist
information concerning the techniques themselves. Issues associated
with the development of bonding models and generalizations that
illuminate the reactivity pathways and rates of chemical processes
are also relevant.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed.
The art of chemistry is to thoroughly understand the properties of molecular compounds and materials and to be able to prepare novel compounds with p- dicted and desirable properties. The basis for progress is to fully appreciate and fundamentally understand the intimate relation between structure and function. The thermodynamic properties (stability, selectivity, redox potential), reactivities (bond breaking and formation, catalysis, electron transfer) and electronic properties (spectroscopy, magnetism) depend on the structure of a compound. Nevertheless, the discovery of novel molecular compounds and materials with exciting prop- ties is often and to a large extent based on serendipity. For compounds with novel and exciting properties, a thorough analysis of experimental data - state-of-the-art spectroscopy, magnetism, thermodynamic properties and/or detailed mechanistic information - combined with sophisticated electronic structure calculations is p- formed to interpret the results and fully understand the structure, properties and their interrelation. From these analyses, new models and theories may emerge, and this has led to the development of ef cient models for the design and interpre- tion of new materials and important new experiments. The chapters in this book therefore describe various fundamental aspects of structures, dynamics and physics of molecules and materials. The approaches, data and models discussed include new theoretical developments, computational studies and experimental work from molecular chemistry to biology and materials science.
A unique selection of papers on the most recent progress in the modelling of biological molecules containing metal ions. New approaches and techniques in this field are allowing researchers to discuss structures, electronic properties and reaction mechanisms of metalloproteins on the basis of computational studies. The book discusses different approaches in the development of new force fields and their application to the computation of the structures, electronic properties and dynamics of bioinorganic compounds as well as quantum mechanical and integrated QM/MM methods for understanding the function of metalloenzymes and the calculation of electrostatic interactions.
The art of chemistry is to thoroughly understand the properties of molecular compounds and materials and to be able to prepare novel compounds with p- dicted and desirable properties. The basis for progress is to fully appreciate and fundamentally understand the intimate relation between structure and function. The thermodynamic properties (stability, selectivity, redox potential), reactivities (bond breaking and formation, catalysis, electron transfer) and electronic properties (spectroscopy, magnetism) depend on the structure of a compound. Nevertheless, the discovery of novel molecular compounds and materials with exciting prop- ties is often and to a large extent based on serendipity. For compounds with novel and exciting properties, a thorough analysis of experimental data - state-of-the-art spectroscopy, magnetism, thermodynamic properties and/or detailed mechanistic information - combined with sophisticated electronic structure calculations is p- formed to interpret the results and fully understand the structure, properties and their interrelation. From these analyses, new models and theories may emerge, and this has led to the development of ef cient models for the design and interpre- tion of new materials and important new experiments. The chapters in this book therefore describe various fundamental aspects of structures, dynamics and physics of molecules and materials. The approaches, data and models discussed include new theoretical developments, computational studies and experimental work from molecular chemistry to biology and materials science.
|
You may like...
|