0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (3)
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 7 of 7 matches in All Departments

Methods of Algebraic Geometry in Control Theory: Part II - Multivariable Linear Systems and Projective Algebraic Geometry... Methods of Algebraic Geometry in Control Theory: Part II - Multivariable Linear Systems and Projective Algebraic Geometry (Hardcover, 1999 ed.)
Peter Falb
R2,868 Discovery Miles 28 680 Ships in 18 - 22 working days

"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is quite satisfactory and natural for scalar systems, the study of multi-input, multi-output linear time invariant control systems requires projective algebraic geometry. Thus, this second volume deals with multi-variable linear systems and pro jective algebraic geometry. The results are deeper and less transparent, but are also quite essential to an understanding of linear control theory. A review of * From the Preface to Part 1. viii Preface the scalar theory is included along with a brief summary of affine algebraic geometry (Appendix E)."

Methods of Algebraic Geometry in Control Theory: Part I - Scalar Linear Systems and Affine Algebraic Geometry (Hardcover, 1990... Methods of Algebraic Geometry in Control Theory: Part I - Scalar Linear Systems and Affine Algebraic Geometry (Hardcover, 1990 ed.)
Peter Falb
R2,764 Discovery Miles 27 640 Ships in 18 - 22 working days

Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of these notes is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory. I began the development of these notes over fifteen years ago with a series of lectures given to the Control Group at the Lund Institute of Technology in Sweden. Over the following years, I presented the material in courses at Brown several times and must express my appreciation for the feedback (sic ) received from the students. I have attempted throughout to strive for clarity, often making use of constructive methods and giving several proofs of a particular result. Since algebraic geometry draws on so many branches of mathematics and can be dauntingly abstract, it is not easy to convey its beauty and utility to those interested in applications. I hope at least to have stirred the reader to seek a deeper understanding of this beauty and utility in control theory. The first volume dea1s with the simplest control systems (i. e. single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i. e. affine algebraic geometry).

Direct Methods in Control Problems (Hardcover, 1st ed. 2019): Peter Falb Direct Methods in Control Problems (Hardcover, 1st ed. 2019)
Peter Falb
R2,463 Discovery Miles 24 630 Ships in 18 - 22 working days

Various general techniques have been developed for control and systems problems, many of which involve indirect methods. Because these indirect methods are not always effective, alternative approaches using direct methods are of particular interest and relevance given the advances of computing in recent years.The focus of this book, unique in the literature, is on direct methods, which are concerned with finding actual solutions to problems in control and systems, often algorithmic in nature. Throughout the work, deterministic and stochastic problems are examined from a unified perspective and with considerable rigor. Emphasis is placed on the theoretical basis of the methods and their potential utility in a broad range of control and systems problems.The book is an excellent reference for graduate students, researchers, applied mathematicians, and control engineers and may be used as a textbook for a graduate course or seminar on direct methods in control.

Methods of Algebraic Geometry in Control Theory: Part I - Scalar Linear Systems and Affine Algebraic Geometry (Paperback,... Methods of Algebraic Geometry in Control Theory: Part I - Scalar Linear Systems and Affine Algebraic Geometry (Paperback, Softcover reprint of the original 1st ed. 1990)
Peter Falb
R2,628 Discovery Miles 26 280 Ships in 18 - 22 working days

Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of these notes is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory. I began the development of these notes over fifteen years ago with a series of lectures given to the Control Group at the Lund Institute of Technology in Sweden. Over the following years, I presented the material in courses at Brown several times and must express my appreciation for the feedback (sic ) received from the students. I have attempted throughout to strive for clarity, often making use of constructive methods and giving several proofs of a particular result. Since algebraic geometry draws on so many branches of mathematics and can be dauntingly abstract, it is not easy to convey its beauty and utility to those interested in applications. I hope at least to have stirred the reader to seek a deeper understanding of this beauty and utility in control theory. The first volume dea1s with the simplest control systems (i. e. single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i. e. affine algebraic geometry).

Methods of Algebraic Geometry in Control Theory: Part II - Multivariable Linear Systems and Projective Algebraic Geometry... Methods of Algebraic Geometry in Control Theory: Part II - Multivariable Linear Systems and Projective Algebraic Geometry (Paperback, 2018 ed.)
Peter Falb
R1,549 Discovery Miles 15 490 Ships in 18 - 22 working days

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." This describes this two volume work which has been specifically written to serve the needs of researchers and students of systems, control, and applied mathematics. Without sacrificing mathematical rigor, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than on abstraction. While familiarity with Part I is helpful, it is not essential, since a considerable amount of relevant material is included here. Part I, Scalar Linear Systems and Affine Algebraic Geometry, contains a clear presentation, with an applied flavor , of the core ideas in the algebra-geometric treatment of scalar linear system theory. Part II extends the theory to multivariable systems. After delineating limitations of the scalar theory through carefully chosen examples, the author introduces seven representations of a multivariable linear system and establishes the major results of the underlying theory. Of key importance is a clear, detailed analysis of the structure of the space of linear systems including the full set of equations defining the space. Key topics also covered are the Geometric Quotient Theorem and a highly geometric analysis of both state and output feedback. Prerequisites are the basics of linear algebra, some simple topological notions, the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises, which are an integral part of the exposition throughout, combined with an index and extensive bibliography of related literature make this a valuable classroom tool or good self-study resource. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "The exposition is extremely clear. In order to motivate the general theory, the author presents a number of examples of two or three input-, two-output systems in detail. I highly recommend this excellent book to all those interested in the interplay between control theory and algebraic geometry." -Publicationes Mathematicae, Debrecen "This book is the multivariable counterpart of Methods of Algebraic Geometry in Control Theory, Part I.... In the first volume the simpler single-input-single-output time-invariant linear systems were considered and the corresponding simpler affine algebraic geometry was used as the required prerequisite. Obviously, multivariable systems are more difficult and consequently the algebraic results are deeper and less transparent, but essential in the understanding of linear control theory.... Each chapter contains illustrative examples throughout and terminates with some exercises for further study." -Mathematical Reviews

Methods of Algebraic Geometry in Control Theory: Part I - Scalar Linear Systems and Affine Algebraic Geometry (Paperback, 2018... Methods of Algebraic Geometry in Control Theory: Part I - Scalar Linear Systems and Affine Algebraic Geometry (Paperback, 2018 ed.)
Peter Falb
R1,408 Discovery Miles 14 080 Ships in 18 - 22 working days

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." -Monatshefte fur Mathematik

Methods of Algebraic Geometry in Control Theory: Part II - Multivariable Linear Systems and Projective Algebraic Geometry... Methods of Algebraic Geometry in Control Theory: Part II - Multivariable Linear Systems and Projective Algebraic Geometry (Paperback, Softcover reprint of the original 1st ed. 1999)
Peter Falb
R2,682 Discovery Miles 26 820 Ships in 18 - 22 working days

"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is quite satisfactory and natural for scalar systems, the study of multi-input, multi-output linear time invariant control systems requires projective algebraic geometry. Thus, this second volume deals with multi-variable linear systems and pro jective algebraic geometry. The results are deeper and less transparent, but are also quite essential to an understanding of linear control theory. A review of * From the Preface to Part 1. viii Preface the scalar theory is included along with a brief summary of affine algebraic geometry (Appendix E).

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
SAS Programming - The One-Day Course
Neil H Spencer Paperback R1,463 Discovery Miles 14 630
Misbelief - What Makes Rational People…
Dan Ariely Paperback R350 R317 Discovery Miles 3 170
Applied Machine Learning
David Forsyth Hardcover R3,082 Discovery Miles 30 820
An Instructor's Guide to Educating with…
Amy Grimes Hardcover R886 Discovery Miles 8 860
Probabilistic Diophantine Approximation…
Jozsef Beck Hardcover R3,621 Discovery Miles 36 210
Pedagogy for Conceptual Thinking and…
Masha Etkind, Uri Shafrir Hardcover R4,597 Discovery Miles 45 970
Algebraic Geometry and Number Theory…
Hussein Mourtada, Celal Cem Sarioglu, … Hardcover R2,791 R2,019 Discovery Miles 20 190
Dark NLP - Your Great Guide For NLP And…
Ryan Newell Hardcover R854 R734 Discovery Miles 7 340
Suzuki Violin School 5 - International…
Shinichi Suzuki Paperback R327 R299 Discovery Miles 2 990
No Filter - The Inside Story of…
Sarah Frier Paperback R448 R417 Discovery Miles 4 170

 

Partners