Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
The field of relativistic electronic structure theory is generally
not part of theoretical chemistry education, and is therefore not
covered in most quantum chemistry textbooks. This is due to the
fact that only in the last two decades have we learned about the
importance of relativistic effects in the chemistry of heavy and
superheavy elements. Developments in computer hardware together
with sophisticated computer algorithms make it now possible to
perform four-component relativistic calculations for larger
molecules. Two-component and scalar all-electron relativistic
schemes are also becoming part of standard ab-initio and density
functional program packages for molecules and the solid state. The
second volume of this two-part book series is therefore devoted to
applications in this area of quantum chemistry and physics of
atoms, molecules and the solid state. Part 1 was devoted to
fundamental aspects of relativistic electronic structure theory
whereas Part 2 covers more of the applications side. This volume
opens with a section on the Chemistry of the Superheavy Elements
and contains chapters dealing with Accurate Relativistic Fock-Space
Calculations for Many-Electron Atoms, Accurate Relativistic
Calculations Including QED, Parity-Violation Effects in Molecules,
Accurate Determination of Electric Field Gradients for Heavy Atoms
and Molecules, Two-Component Relativistic Effective Core Potential
Calculations for Molecules, Relativistic Ab-Initio Model Potential
Calculations for Molecules and Embedded Clusters, Relativistic
Pseudopotential Calculations for Electronic Excited States,
Relativistic Effects on NMR Chemical Shifts, Relativistic Density
Functional Calculations on Small Molecules, Quantum Chemistry with
the Douglas-Kroll-Hess Approach to Relativistic Density Functional
Theory, and Relativistic Solid State Calculations.
'Dynamic Meteorology: A Basic Course' is an introduction to the physics of the atmosphere. Starting from the basics, it provides students with an awareness of simple mathematics and enthusiastically proceeds to provide a thorough grounding in the fundamentals of meteorology. The authors lead students to a scientifically rigorous understanding of the behaviour of weather systems such as highs, lows, fronts, jet streams and tropical cyclones. From the 'ABC' of the laws of Avogrado, Boyle and Charles to the powerful omega equation and beyond, this is a simple exposition of dynamic meteorology. Why does the wind blow along the lines of isobars rather than across them? Why are low pressure systems on the weather map more intense than high-pressure systems? Why is there much less constraint on the strength of the wind around a cyclone than an anticyclone? An international team of academic experts in meteorology answer these and many other fundamental questions with simple mathematical equations. Covering both northern and southern hemispheres, 'Dynamic Meteorology' equips students of earth and environmental sciences with proper understanding of the essential mathematics necessary to unlock the mysteries of the natural world.
The first volume of this two part series is concerned with the
fundamental aspects of relativistic quantum theory, outlining the
enormous progress made in the last twenty years in this field. The
aim was to create a book such that researchers who become
interested in this exciting new field find it useful as a textbook,
and do not have to rely on a rather large number of specialized
papers published in this area.
|
You may like...
|