![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
The use of coal is required to help satisfy the world's energy needs. Yet coal is a difficult fossil fuel to consume efficiently and cleanly. We believe that its clean and efficient use can be increased through improved technology based on a thorough understanding of fundamental physical and chemical processes that occur during consumption. The principal objective of this book is to provide a current summary of this technology. The past technology for describing and analyzing coal furnaces and combus tors has relied largely on empirical inputs for the complex flow and chemical reactions that occur while more formally treating the heat-transfer effects. GrOWing concern over control of combustion-generated air pollutants revealed a lack of understanding of the relevant fundamental physical and chemical mechanisms. Recent technical advances in computer speed and storage capacity, and in numerical prediction of recirculating turbulent flows, two-phase flows, and flows with chemical reaction have opened new opportunities for describing and modeling such complex combustion systems in greater detail. We believe that most of the requisite component models to permit a more fundamental description of coal combustion processes are available. At the same time there is worldwide interest in the use of coal, and progress in modeling of coal reaction processes has been steady."
This volume provides an exceptional perspective on the nature, evolution, contributions and future of the field of Cognitive Systems Engineering (CSE). It is a resource to support both the teaching and practice of CSE. It accomplishes this through its organization into two complementary approaches to the topic. The first is an historical perspective: In the retrospections of leaders of the field, what have been the seminal achievements of cognitive human factors? What are the "lessons learned" that became foundational to CSE, and how did that foundation evolve into a broader systems view of cognitive work? The second perspective is both pedagogical and future-looking: What are the major conceptual issues that have to be addressed by CSE and how can a new generation of researchers be prepared to further advance CSE? Topics include studies of expertise, cognitive work analysis, cognitive task analysis, human performance, system design, cognitive modeling, decision making, human-computer interaction, trust in automation, teamwork and ecological interface design. A thematic focus will be on systems-level analysis, and such notions as resilience engineering and systems-level measurement. The book features broad coverage of many of the domains to which CSE is being applied, among them industrial process control, health care, decision aiding and aviation human factors. The book's contributions are provided by an extraordinary group of leaders and pathfinders in applied psychology, cognitive science, systems analysis and system design. In combination these chapters present invaluable insights, experiences and continuing uncertainties on the subject of the field of CSE, and in doing so honor the career and achievements of Professor David D. Woods of Ohio State University.
The use of coal is required to help satisfy the world's energy needs. Yet coal is a difficult fossil fuel to consume efficiently and cleanly. We believe that its clean and efficient use can be increased through improved technology based on a thorough understanding of fundamental physical and chemical processes that occur during consumption. The principal objective of this book is to provide a current summary of this technology. The past technology for describing and analyzing coal furnaces and combus tors has relied largely on empirical inputs for the complex flow and chemical reactions that occur while more formally treating the heat-transfer effects. GrOWing concern over control of combustion-generated air pollutants revealed a lack of understanding of the relevant fundamental physical and chemical mechanisms. Recent technical advances in computer speed and storage capacity, and in numerical prediction of recirculating turbulent flows, two-phase flows, and flows with chemical reaction have opened new opportunities for describing and modeling such complex combustion systems in greater detail. We believe that most of the requisite component models to permit a more fundamental description of coal combustion processes are available. At the same time there is worldwide interest in the use of coal, and progress in modeling of coal reaction processes has been steady."
This volume provides an exceptional perspective on the nature, evolution, contributions and future of the field of Cognitive Systems Engineering (CSE). It is a resource to support both the teaching and practice of CSE. It accomplishes this through its organization into two complementary approaches to the topic. The first is an historical perspective: In the retrospections of leaders of the field, what have been the seminal achievements of cognitive human factors? What are the "lessons learned" that became foundational to CSE, and how did that foundation evolve into a broader systems view of cognitive work? The second perspective is both pedagogical and future-looking: What are the major conceptual issues that have to be addressed by CSE and how can a new generation of researchers be prepared to further advance CSE? Topics include studies of expertise, cognitive work analysis, cognitive task analysis, human performance, system design, cognitive modeling, decision making, human-computer interaction, trust in automation, teamwork and ecological interface design. A thematic focus will be on systems-level analysis, and such notions as resilience engineering and systems-level measurement. The book features broad coverage of many of the domains to which CSE is being applied, among them industrial process control, health care, decision aiding and aviation human factors. The book's contributions are provided by an extraordinary group of leaders and pathfinders in applied psychology, cognitive science, systems analysis and system design. In combination these chapters present invaluable insights, experiences and continuing uncertainties on the subject of the field of CSE, and in doing so honor the career and achievements of Professor David D. Woods of Ohio State University.
This regional study looks at the topography and epigraphy of Megaris, the territory between Attica, Corinth and Boetia, focusing on the Post-Classical periods. Philip Smith examines in turn, the archaeological, literary and epigraphic evidence for the region, compiling a useful catalogue of sites on the Megarid, with numerous maps and plans. All inscriptions cited are included in an appendix. In conclusion Smith posits an unusually stable transition between Classical and Hellenistic, with the region possibly even witnessing economic growth. From the epigraphic evidence observations are made as to the administrative and religious structures of Megarian society.
|
![]() ![]() You may like...
Avengers: 4-Movie Collection - The…
Robert Downey Jr., Chris Evans, …
Blu-ray disc
R589
Discovery Miles 5 890
|