Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
Twenty years ago, researchers wishing to identify contaminated areas in aquatic environments generally took water samples, and analysed them badly (as we have since discovered) for a few "pollutants" which were of topical note at the time (and which could be quantified by the methods then available). Today, the use of aquatic organisms as biomonitors in preference to water analysis has become commonplace, and many national and interna tional programmes exist around the world involving such studies. We believe that this trend will continue, and have complete faith in the methodology (when it is employed correctly). We hope that the following text assists in some part in attaining this goal, such that the quality of our most basic global resource -water - is adequately protected in the future. DAVE PHILLIPS, PHIL RAINBOW England, March 1992 vii Acknowledgements Our thanks for contributions to this book are due to several individuals and groups, for varying reasons. Firstly, a co-authored book is always a triumph, and we trust that the following text is an acceptable compromise of the views of two individual authors, on a complex and developing topic. Secondly, many of the ideas herein have crystallised over the last two decades as the field has grown, and we are individually and collectively grateful to a number of researchers for their insight and assistance."
Tolerance, the ability of populations to cope with the chemical stress resulting from toxic contaminants, has been described in many organisms from bacteria to fungi, from phytoplankton to terrestrial flowering plants, and from invertebrates such as worms to vertebrates like fish and amphibians. The building of tolerance, be it by physiological acclimation or genetic adaptation, can have great consequences for the local biodiversity, and hence the ecology and ecosystem functioning of many of the world's habitats. Understanding the frequency of the occurrence of tolerance has tremendous implications for the sustainability of biodiversity and ecosystem functioning. Tolerance to Environmental Contaminants takes a multidisciplinary approach across contaminant types, habitats, organisms, biological levels of organization and scientific disciplines. The book examines the general principles governing the acquisition and biological consequences of tolerance, genetically or physiologically based, at different levels of biological organization, taxonomically from bacteria and archaea to flowering plants and vertebrates, and within organisms from molecular biology and biochemistry through physiology to whole organism, community, and ecosystem levels of organization. Presenting a state-of-the-art synthesis of the many aspects of the phenomenon of tolerance to environmental contaminants, this volume covers mechanisms of defense involved in the acquisition of tolerance, different classes of environmental contaminants, positive and negative ecological consequences of tolerance and the impact of tolerance in bacteria, plants, and insects on society. The reviews presented in this book supply the tools for carrying out more informed and therefore more reliable risk-benefit analyses when assessing the ecotoxicological risks to life in any of the contaminated habitats that now surround us in our industrialized society.
Estuaries in every country exemplify the same paradox - they are among the most productive ecosystems and also among the most impacted by anthropogenic activities. And although estuarine biodiversity is key to the ecological and economic health of coastal regions, estuaries are exposed to toxic effluents transported by rivers from remote and nearby conurbations and industrial and agricultural concerns, putting them at risk. Increased attention to environmental issues highlights the fragility and importance of estuaries and brings to the forefront the need for an up-to-date assessment of techniques. Environmental Assessment of Estuarine Ecosystems: A Case Study describes a comparative, multidisciplinary ecotoxicological study of two contrasting estuaries in France. Based on the results of this study, the book presents generalizations about how different techniques might be applied and interpreted in future, similar studies assessing the ecotoxicological status of these vital coastal systems. With contributions from international experts, this reference covers all aspects of estuaries from the physiological to the economical. It introduces the state-of-the-art science required to investigate ecotoxicological problems in many estuaries all over the world. Although carefully focused on a specific region, this book covers a broad range of environmental issues and solutions, demonstrating how various pieces of information can be integrated into a sound assessment. Understanding the observations about this region and the techniques used for its assessment provide a benchmark for assessing, remediating, and applying new developments to other estuaries.
Ecotoxicology of Metals in Invertebrates reviews the state of the art in research concerning metal exposure of marine, freshwater, and terrestrial invertebrates. The book focuses on the uptake and accumulation of essential and non-essential trace metals by invertebrates, metal detoxification and involved mechanisms, adaptations to metal stress, metal regulation and elimination, distribution and speciation of metals in different organs and tissues, and interaction of metals with biotic and abiotic factors. Toxicological studies involve histopathological, electron microscopic, physiological, and biochemical methods. The book emphasizes the ecological and ecotoxicological implications that can be derived from metal exposure of invertebrates in the field. The significance of background concentrations, the evaluation of critical concentrations, and the establishment of environmental quality criteria are discussed as well. Ecotoxicology of Metals in Invertebrates is an excellent reference for ecologists, ecotoxicologists, environmental scientists, ecophysiologists, and students.
Does a change, which affects a few biological macro-molecules, some cells, or a few individuals within a population, have any ecological significance that would allow the prediction of deleterious effects at higher levels of biological organization, namely the population, community, and ultimately the ecosystem? With contributions from experts in the field, Ecological Biomarkers: Indicators of Ecotoxicological Effects explores how biomarkers can be used to predict effects farther down the chain. It presents a synthesis of the state of the art in the methodology of biomarkers and its contribution to ecological risk assessment. This book describes the core biomarkers currently used in environmental research concerned with biological monitoring, biomarkers which correspond to the defences developed by living organisms in response to contaminants in their environment, and biomarkers that reveal biological damage resulting from contaminant stressors. It examines the efficacy of lysosomal biomarkers, immunotoxicity effects, behavioral disturbances, energy metabolism impairments, endocrine disruption measures, and genotoxicity as all indicative of probable toxic effects at higher biological levels. It is time to revisit the biological responses most ecologically relevant in the diagnosis of the health status of an aquatic environment well before it becomes unmanageable. Biomarkers provide a real possibility of delivering an easily measured marker at a simple level of biological organization that is predictably linked to a potentially ecologically significant effect at higher levels of biological organization. The text explores the latest knowledge and thinking on how to use biomarkers as tools for the assessment of environmental health and management.
Metal contamination is one of the most ubiquitous, persistent and complex environmental issues, encompassing legacies of the past (e.g. abandoned mines) as well as impending, but poorly studied, threats (e.g. metallo-nanomaterials). Writing for graduate students, risk assessors and environmental managers, Drs Luoma and Rainbow explain why controversies exist in managing metal contamination and highlight opportunities for policy solutions stemming from the latest advances in the field. They illustrate how the 'lateral' approach offers opportunities in both science and management, making the case that the advanced state of the science now allows bridging of traditional boundaries in the field (e.g. between field observations and laboratory toxicology). The book has a uniquely international and interdisciplinary perspective, integrating geochemistry, biology, ecology, and toxicology, as well as policy and science. It explicitly shows how science ties into today's regulatory structure, identifying opportunities for more effective risk management in the future.
Twenty years ago, researchers wishing to identify contaminated areas in aquatic environments generally took water samples, and analysed them badly (as we have since discovered) for a few "pollutants" which were of topical note at the time (and which could be quantified by the methods then available). Today, the use of aquatic organisms as biomonitors in preference to water analysis has become commonplace, and many national and interna tional programmes exist around the world involving such studies. We believe that this trend will continue, and have complete faith in the methodology (when it is employed correctly). We hope that the following text assists in some part in attaining this goal, such that the quality of our most basic global resource -water - is adequately protected in the future. DAVE PHILLIPS, PHIL RAINBOW England, March 1992 vii Acknowledgements Our thanks for contributions to this book are due to several individuals and groups, for varying reasons. Firstly, a co-authored book is always a triumph, and we trust that the following text is an acceptable compromise of the views of two individual authors, on a complex and developing topic. Secondly, many of the ideas herein have crystallised over the last two decades as the field has grown, and we are individually and collectively grateful to a number of researchers for their insight and assistance."
Twenty years ago, researchers wishing to identify contaminated areas in aquatic environments generally took water samples, and analysed them badly (as we have since discovered) for a few "pollutants" which were of topical note at the time (and which could be quantified by the methods then available). Today, the use of aquatic organisms as biomonitors in preference to water analysis has become commonplace, and many national and interna tional programmes exist around the world involving such studies. We believe that this trend will continue, and have complete faith in the methodology (when it is employed correctly). We hope that the following text assists in some part in attaining this goal, such that the quality of our most basic global resource - water - is adequately protected in the future. DAVE PHILLIPS, PHIL RAINBOW England. March 1992 VII Acknowledgements Our thanks for contributions to this book are due to several individuals and groups, for varying reasons. Firstly, a co-authored book is always a triumph, and we trust that the following text is an acceptable compromise ofthe views oftwo individual authors, on a complex and developing topic. Secondly, many of the ideas herein have crystallised over the last two decades as the field has grown, and we are individually and collectively grateful to a number of researchers for their insight and assistance.
Tolerance, the ability of populations to cope with the chemical stress resulting from toxic contaminants, has been described in many organisms from bacteria to fungi, from phytoplankton to terrestrial flowering plants, and from invertebrates such as worms to vertebrates like fish and amphibians. The building of tolerance, be it by physiological acclimation or genetic adaptation, can have great consequences for the local biodiversity, and hence the ecology and ecosystem functioning of many of the world's habitats. Understanding the frequency of the occurrence of tolerance has tremendous implications for the sustainability of biodiversity and ecosystem functioning. Tolerance to Environmental Contaminants takes a multidisciplinary approach across contaminant types, habitats, organisms, biological levels of organization and scientific disciplines. The book examines the general principles governing the acquisition and biological consequences of tolerance, genetically or physiologically based, at different levels of biological organization, taxonomically from bacteria and archaea to flowering plants and vertebrates, and within organisms from molecular biology and biochemistry through physiology to whole organism, community, and ecosystem levels of organization. Presenting a state-of-the-art synthesis of the many aspects of the phenomenon of tolerance to environmental contaminants, this volume covers mechanisms of defense involved in the acquisition of tolerance, different classes of environmental contaminants, positive and negative ecological consequences of tolerance and the impact of tolerance in bacteria, plants, and insects on society. The reviews presented in this book supply the tools for carrying out more informed and therefore more reliable risk-benefit analyses when assessing the ecotoxicological risks to life in any of the contaminated habitats that now surround us in our industrialized society.
Trace metals play key roles in life - all are toxic above a threshold bioavailability, yet many are essential to metabolism at lower doses. It is important to appreciate the natural history of an organism in order to understand the interaction between its biology and trace metals. The countryside and indeed the natural history of the British Isles are littered with the effects of metals, mostly via historical mining and subsequent industrial development. This fascinating story encompasses history, economics, geography, geology, chemistry, biochemistry, physiology, ecology, ecotoxicology and above all natural history. Examples abound of interactions between organisms and metals in the terrestrial, freshwater, estuarine, coastal and oceanic environments in and around the British Isles. Many of these interactions have nothing to do with metal pollution. All organisms are affected from bacteria, plants and invertebrates to charismatic species such as seals, dolphins, whales and seabirds. All have a tale to tell.
Estuaries in every country exemplify the same paradox - they are among the most productive ecosystems and also among the most impacted by anthropogenic activities. And although estuarine biodiversity is key to the ecological and economic health of coastal regions, estuaries are exposed to toxic effluents transported by rivers from remote and nearby conurbations and industrial and agricultural concerns, putting them at risk. Increased attention to environmental issues highlights the fragility and importance of estuaries and brings to the forefront the need for an up-to-date assessment of techniques. Environmental Assessment of Estuarine Ecosystems: A Case Study describes a comparative, multidisciplinary ecotoxicological study of two contrasting estuaries in France. Based on the results of this study, the book presents generalizations about how different techniques might be applied and interpreted in future, similar studies assessing the ecotoxicological status of these vital coastal systems. With contributions from international experts, this reference covers all aspects of estuaries from the physiological to the economical. It introduces the state-of-the-art science required to investigate ecotoxicological problems in many estuaries all over the world. Although carefully focused on a specific region, this book covers a broad range of environmental issues and solutions, demonstrating how various pieces of information can be integrated into a sound assessment. Understanding the observations about this region and the techniques used for its assessment provide a benchmark for assessing, remediating, and applying new developments to other estuaries.
|
You may like...
|