0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R250 - R500 (1)
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 5 of 5 matches in All Departments

Probabilistic Reasoning and Decision Making in Sensory-Motor Systems (Hardcover, 2008 ed.): Pierre Bessiere, Christian Laugier,... Probabilistic Reasoning and Decision Making in Sensory-Motor Systems (Hardcover, 2008 ed.)
Pierre Bessiere, Christian Laugier, Roland Siegwart
R4,581 Discovery Miles 45 810 Ships in 10 - 15 working days

Probabilistic Reasoning and Decision Making in Sensory-Motor Systems by Pierre Bessiere, Christian Laugier and Roland Siegwart provides a unique collection of a sizable segment of the cognitive systems research community in Europe. It reports on contributions from leading academic institutions brought together within the European projects Bayesian Inspired Brain and Artifact (BIBA) and Bayesian Approach to Cognitive Systems (BACS). This fourteen-chapter volume covers important research along two main lines: new probabilistic models and algorithms for perception and action, new probabilistic methodology and techniques for artefact conception and development. The work addresses key issues concerned with Bayesian programming, navigation, filtering, modelling and mapping, with applications in a number of different contexts.

Bayesian Programming (Paperback): Pierre Bessiere, Emmanuel Mazer, Juan Ahuactzin, Kamel Mekhnacha Bayesian Programming (Paperback)
Pierre Bessiere, Emmanuel Mazer, Juan Ahuactzin, Kamel Mekhnacha
R1,516 Discovery Miles 15 160 Ships in 12 - 19 working days

Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain DataEmphasizing probability as an alternative to Boolean logic, Bayesian Programming covers new methods to build probabilistic programs for real-world applications. Written by the team who designed and implemented an efficient probabilistic inference engine to interpret Bayesian programs, the book offers many Python examples that are also available on a supplementary website together with an interpreter that allows readers to experiment with this new approach to programming. Principles and Modeling Only requiring a basic foundation in mathematics, the first two parts of the book present a new methodology for building subjective probabilistic models. The authors introduce the principles of Bayesian programming and discuss good practices for probabilistic modeling. Numerous simple examples highlight the application of Bayesian modeling in different fields. Formalism and AlgorithmsThe third part synthesizes existing work on Bayesian inference algorithms since an efficient Bayesian inference engine is needed to automate the probabilistic calculus in Bayesian programs. Many bibliographic references are included for readers who would like more details on the formalism of Bayesian programming, the main probabilistic models, general purpose algorithms for Bayesian inference, and learning problems. FAQsAlong with a glossary, the fourth part contains answers to frequently asked questions. The authors compare Bayesian programming and possibility theories, discuss the computational complexity of Bayesian inference, cover the irreducibility of incompleteness, and address the subjectivist versus objectivist epistemology of probability. The First Steps toward a Bayesian ComputerA new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It encourages readers to explore emerging areas, such as bio-inspired computing, and develop new programming languages and hardware architectures.

Probabilistic Reasoning and Decision Making in Sensory-Motor Systems (Paperback, Softcover reprint of hardcover 1st ed. 2008):... Probabilistic Reasoning and Decision Making in Sensory-Motor Systems (Paperback, Softcover reprint of hardcover 1st ed. 2008)
Pierre Bessiere, Christian Laugier, Roland Siegwart
R4,379 Discovery Miles 43 790 Ships in 10 - 15 working days

Probabilistic Reasoning and Decision Making in Sensory-Motor Systems by Pierre Bessiere, Christian Laugier and Roland Siegwart provides a unique collection of a sizable segment of the cognitive systems research community in Europe. It reports on contributions from leading academic institutions brought together within the European projects Bayesian Inspired Brain and Artifact (BIBA) and Bayesian Approach to Cognitive Systems (BACS). This fourteen-chapter volume covers important research along two main lines: new probabilistic models and algorithms for perception and action, new probabilistic methodology and techniques for artefact conception and development. The work addresses key issues concerned with Bayesian programming, navigation, filtering, modelling and mapping, with applications in a number of different contexts.

Essai Historique Et Critique Sur La Chaleur Animale (French, Paperback): Jean-Pierre Bessieres Essai Historique Et Critique Sur La Chaleur Animale (French, Paperback)
Jean-Pierre Bessieres
R360 Discovery Miles 3 600 Ships in 10 - 15 working days
Bayesian Programming (Hardcover, New): Pierre Bessiere, Emmanuel Mazer, Juan Ahuactzin, Kamel Mekhnacha Bayesian Programming (Hardcover, New)
Pierre Bessiere, Emmanuel Mazer, Juan Ahuactzin, Kamel Mekhnacha
R4,488 Discovery Miles 44 880 Ships in 12 - 19 working days

Probability as an Alternative to Boolean Logic
While logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data.

Decision-Making Tools and Methods for Incomplete and Uncertain Data
Emphasizing probability as an alternative to Boolean logic, Bayesian Programming covers new methods to build probabilistic programs for real-world applications. Written by the team who designed and implemented an efficient probabilistic inference engine to interpret Bayesian programs, the book offers many Python examples that are also available on a supplementary website together with an interpreter that allows readers to experiment with this new approach to programming.

Principles and Modeling
Only requiring a basic foundation in mathematics, the first two parts of the book present a new methodology for building subjective probabilistic models. The authors introduce the principles of Bayesian programming and discuss good practices for probabilistic modeling. Numerous simple examples highlight the application of Bayesian modeling in different fields.

Formalism and Algorithms
The third part synthesizes existing work on Bayesian inference algorithms since an efficient Bayesian inference engine is needed to automate the probabilistic calculus in Bayesian programs. Many bibliographic references are included for readers who would like more details on the formalism of Bayesian programming, the main probabilistic models, general purpose algorithms for Bayesian inference, and learning problems.

FAQs
Along with a glossary, the fourth part contains answers to frequently asked questions. The authors compare Bayesian programming and possibility theories, discuss the computational complexity of Bayesian inference, cover the irreducibility of incompleteness, and address the subjectivist versus objectivist epistemology of probability.

The First Steps toward a Bayesian Computer
A new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It encourages readers to explore emerging areas, such as bio-inspired computing, and develop new programming languages and hardware architectures.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Miss Behave
Malebo Sephodi Paperback  (12)
R302 Discovery Miles 3 020
A Russian On Commando - The Boer War…
Boris Gorelik Paperback R300 R268 Discovery Miles 2 680
Imtiaz Sooliman And The Gift Of The…
Shafiq Morton Paperback  (1)
R360 R332 Discovery Miles 3 320
Across Boundaries - A Life In The Media…
Ton Vosloo Paperback R693 Discovery Miles 6 930
Golden High Flow Acrylic Paint - Titan…
R802 R605 Discovery Miles 6 050
Planetary Cartography and GIS
Henrik Hargitai Hardcover R5,142 Discovery Miles 51 420
Man's Unconscious Passion
Lay Paperback R525 Discovery Miles 5 250
Astrobiology and Cuatro Cienegas Basin…
Valeria Souza, Antigona Segura, … Hardcover R2,888 Discovery Miles 28 880
Afterlives of the Rich and Famous
Sylvia Browne Paperback R369 R345 Discovery Miles 3 450
Farm Stall To Farm Stall - A Food…
Jennifer Stern Paperback R105 R97 Discovery Miles 970

 

Partners