Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book enables readers to design effective ESD protection solutions for all mainstream RF fabrication processes (GaAs pHEMT, SiGe HBT, CMOS). The new techniques introduced by the authors have much higher protection levels and much lower parasitic effects than those of existing ESD protection devices. The authors describe in detail the ESD phenomenon, as well as ESD protection fundamentals, standards, test equipment, and basic design strategies. Readers will benefit from realistic case studies of ESD protection for RFICs and will learn to increase significantly modern RFICs' ESD safety level, while maximizing RF performance.
Rapid developments in experimental techniques continue to push back the limits in the resolution, size, and complexity of the chemical and biological systems that can be investigated. This challenges the theoretical community to develop innovative methods for better interpreting experimental results. Normal Mode Analysis (NMA) is one such technique. Capable of providing unique insights into the structural and dynamical properties of complex systems, it is now finding a wide range of applications in chemical and biological problems. From the fundamental physical ideas to cutting-edge applications and beyond, this book presents a broad overview of normal mode analysis and its value in state-of-the-art research. The first section introduces NMA, examines NMA algorithm development at different resolutions, and explores the application of those techniques in the study of biological systems. Later chapters cover method developments based on or inspired by NMA but going beyond the harmonic approximation inherent in standard NMA techniques. Normal mode analysis complements traditional approaches with computational efficiency and applicability to large systems that are beyond the reach of older methods. This book offers a unique opportunity to learn from the experiences of an international, interdisciplinary panel of top researchers and explore the latest developments and applications of NMA to biophysical and chemical problems.
This book enables readers to design effective ESD protection solutions for all mainstream RF fabrication processes (GaAs pHEMT, SiGe HBT, CMOS). The new techniques introduced by the authors have much higher protection levels and much lower parasitic effects than those of existing ESD protection devices. The authors describe in detail the ESD phenomenon, as well as ESD protection fundamentals, standards, test equipment, and basic design strategies. Readers will benefit from realistic case studies of ESD protection for RFICs and will learn to increase significantly modern RFICs’ ESD safety level, while maximizing RF performance.
As computational hardware continues to develop at a rapid pace, quantitative computations are playing an increasingly essential role in the study of biomolecular systems. One of the most important challenges that the field faces is to develop the next generation of computational models that strike the proper balance of computational efficiency and accuracy, so that the problems of increasing complexity can be tackled in a systematic and physically robust manner. In particular, properly treating intermolecular interactions is fundamentally important for the reliability of all computational models. In this book, contributions by leading experts in the area of biomolecular simulations discuss cutting-edge ideas regarding effective strategies to describe many-body effects and electrostatics at quantum, classical, and coarse-grained levels. The goal of the book is to not only provide an up-to-date snapshot of the current simulation field but also stimulate exchange of ideas across different sub-fields of modern computational (bio)chemistry. The text will be a useful reference for the biomolecular simulation community and help attract talented young students into this exciting frontier of research.
|
You may like...
|