|
Showing 1 - 3 of
3 matches in All Departments
Matroid theory has its origin in a paper by H. Whitney entitled "On
the abstract properties of linear dependence" [35], which appeared
in 1935. The main objective of the paper was to establish the
essential (abstract) properties of the concepts of linear
dependence and independence in vector spaces, and to use these for
the axiomatic definition of a new algebraic object, namely the
matroid. Furthermore, Whitney showed that these axioms are also
abstractions of certain graph-theoretic concepts. This is very much
in evidence when one considers the basic concepts making up the
structure of a matroid: some reflect their linear algebraic origin,
while others reflect their graph-theoretic origin. Whitney also
studied a number of important examples of matroids. The next major
development was brought about in the forties by R. Rado's matroid
generalisation of P. Hall's famous "marriage" theorem. This
provided new impulses for transversal theory, in which matroids
today play an essential role under the name of "independence
structures", cf. the treatise on transversal theory by L. Mirsky
[26J. At roughly the same time R.P. Dilworth estab lished the
connection between matroids and lattice theory. Thus matroids
became an essential part of combinatorial mathematics. About ten
years later W.T. Tutte [30] developed the funda mentals of matroids
in detail from a graph-theoretic point of view, and characterised
graphic matroids as well as the larger class of those matroids that
are representable over any field.
,, "'------ / I, I I I \ I, I I, 0 I ------- I ", \ I \ I, \, ", "-
-, \ \ \ \ \,, I I J I, Fig. 5 gungen von (3. I) entsprechen,
nlimlich: II: min {p' x + x' C x I A x = b, x O} (4. 6) und ill:
min {p' x + x' C x I A x b}. (4. 7) Diese heiden Formulierungen
dienen nur der mathematischen Vereinfachung. 'Sachlich bringen auch
sie nichts Neues gegeniiber I, da man die abgeanderten Ne-
benbedingungen von II und ill mittels der in Kapitel II (Abschnitt
3) beschriebenen Verfahren auf die Form I bringen kann, indem man
etwa eine Gleichungsrestriktion durch zwei
Ungleichungsrestriktionen ersetzt oder eine unbeschrlinkte Variable
als Differenz zweier nicht-negativer Variablen ansetzt. Will man
umgekehrt Problem I auf die Form II bringen, so fUhrt man fUr jede
Ungleichungsrestriktion aus (4. 3) eine Schlupfvariable Yj ein und
ersetzt aj x b durch aj x + Yj= b, Yj 0, kurz j j Ax+y=b, y O. (4.
8) Mit (4. 9) x= 11---;--l A* = II AlE II, C* = 11-- -+-g--l p* =
11---s---11 ist Problem I aquivalent dem Problem min {p*' x* + X*'
C* x* I A* x* = b, x* OJ, (4. 10) das die gewiinschte Form II hat.
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R383
R318
Discovery Miles 3 180
Top Five
Chris Rock, Rosario Dawson, …
Blu-ray disc
R38
Discovery Miles 380
|