Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
"Organocatalyzed Reactions" "I" and "II" presents a timely
summary of organocatalysed reactions including: a) Enantioselective
C-C bond formation processes e.g. Michael-addition,
Mannich-reaction, Hydrocyanation (Strecker-reaction), aldol
reaction, allylation, cycloadditions, aza-Diels-Alder reactions,
benzoin condensation, Stetter reaction, conjugative Umpolung,
asymmetric Friedel-Crafts reactions; b) Asymmetric enantioselective
reduction processes e.g. Reductive amination of aldehydes or
ketones, asymmetric transfer hydrogenation; c) Asymmetric
enantioselective oxidation processes;
Aldol Reactions provides a comprehensive up-to-date overview of aldol reactions including application of different metal enolates; catalytic aldol additions catalyzed by different Lewis acids and Lewis bases; enantioselective direct aldol additions; antibodies and enzyme catalyzed aldol additions and the recent aggressive development of organocatalyzed aldol additions. The power of each method is demonstrated by several applications in total synthesis of natural products. The pros and cons of these methodologies with regard to stereoselectivity, regioselectivity and application in total synthesis of natural products are discussed. Great importance is set to the diverse possibilities of the manual of aldol reaction to install required configurations in complicated natural product synthesis.
"Organocatalyzed Reactions" "I" and "II" presents a timely
summary of organocatalysed reactions including: a) Enantioselective
C-C bond formation processes e.g. Michael-addition,
Mannich-reaction, Hydrocyanation (Strecker-reaction), aldol
reaction, allylation, cycloadditions, aza-Diels-Alder reactions,
benzoin condensation, Stetter reaction, conjugative Umpolung,
asymmetric Friedel-Crafts reactions; b) Asymmetric enantioselective
reduction processes e.g. Reductive amination of aldehydes or
ketones, asymmetric transfer hydrogenation; c) Asymmetric
enantioselective oxidation processes;
This brief presents a valuable and concise overview of organocatalytic methodologies in carbohydrate chemistry. It includes glycosylation processes with de novo syntheses of carbohydrates and chain elongation of carbohydrates. The author, an academic of international distinction, goes on to make comparisons between traditional organic and metalorganic transformations.
Organocatalyzed Reactions I and II presents a timely summary of organocatalysed reactions including: a) Enantioselective C-C bond formation processes e.g. Michael-addition, Mannich-reaction, Hydrocyanation (Strecker-reaction), aldol reaction, allylation, cycloadditions, aza-Diels-Alder reactions, benzoin condensation, Stetter reaction, conjugative Umpolung, asymmetric Friedel-Crafts reactions; b) Asymmetric enantioselective reduction processes e.g. Reductive amination of aldehydes or ketones, asymmetric transfer hydrogenation; c) Asymmetric enantioselective oxidation processes; d) Asymmetric epoxidation, Bayer-Villiger oxidation; e) Enantioselective a-functionalization; f) A-alkylation of ketones, a-halogenation and a-oxidation of carbonyl compounds.
Aldol Reactions provides a comprehensive up-to-date overview of aldol reactions including application of different metal enolates; catalytic aldol additions catalyzed by different Lewis acids and Lewis bases; enantioselective direct aldol additions; antibodies and enzyme catalyzed aldol additions and the recent aggressive development of organocatalyzed aldol additions. The power of each method is demonstrated by several applications in total synthesis of natural products. The pros and cons of these methodologies with regard to stereoselectivity, regioselectivity and application in total synthesis of natural products are discussed. Great importance is set to the diverse possibilities of the manual of aldol reaction to install required configurations in complicated natural product synthesis.
The selective formation of bondings between molecules is one of the
major challenges in organic chemistry, and the so-called aldol
reaction is one of the most important for this purpose. These
reactions are a highly useful tool for developing such novel
substances as natural products and pharmaceuticals.
|
You may like...
|