![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Markov chains have increasingly become useful way of capturing stochastic nature of many economic and financial variables. Although the hidden Markov processes have been widely employed for some time in many engineering applications e.g. speech recognition, its effectiveness has now been recognized in areas of social science research as well. The main aim of Hidden Markov Models: Applications to Financial Economics is to make such techniques available to more researchers in financial economics. As such we only cover the necessary theoretical aspects in each chapter while focusing on real life applications using contemporary data mainly from OECD group of countries. The underlying assumption here is that the researchers in financial economics would be familiar with such application although empirical techniques would be more traditional econometrics. Keeping the application level in a more familiar level, we focus on the methodology based on hidden Markov processes. This will, we believe, help the reader to develop more in-depth understanding of the modeling issues thereby benefiting their future research.
Includes traditional elements of financial econometrics but is not yet another volume in econometrics. Discusses statistical and probability techniques commonly used in quantitative finance. The reader will be able to explore more complex structures without getting inundated with the underlying mathematics.
Markov chains have increasingly become useful way of capturing stochastic nature of many economic and financial variables. Although the hidden Markov processes have been widely employed for some time in many engineering applications e.g. speech recognition, its effectiveness has now been recognized in areas of social science research as well. The main aim of Hidden Markov Models: Applications to Financial Economics is to make such techniques available to more researchers in financial economics. As such we only cover the necessary theoretical aspects in each chapter while focusing on real life applications using contemporary data mainly from OECD group of countries. The underlying assumption here is that the researchers in financial economics would be familiar with such application although empirical techniques would be more traditional econometrics. Keeping the application level in a more familiar level, we focus on the methodology based on hidden Markov processes. This will, we believe, help the reader to develop more in-depth understanding of the modeling issues thereby benefiting their future research.
Includes traditional elements of financial econometrics but is not yet another volume in econometrics. Discusses statistical and probability techniques commonly used in quantitative finance. The reader will be able to explore more complex structures without getting inundated with the underlying mathematics.
This book provides a comprehensive account of stochastic filtering as a modeling tool in finance and economics. It aims to present this very important tool with a view to making it more popular among researchers in the disciplines of finance and economics. It is not intended to give a complete mathematical treatment of different stochastic filtering approaches, but rather to describe them in simple terms and illustrate their application with real historical data for problems normally encountered in these disciplines. Beyond laying out the steps to be implemented, the steps are demonstrated in the context of different market segments. Although no prior knowledge in this area is required, the reader is expected to have knowledge of probability theory as well as a general mathematical aptitude.Its simple presentation of complex algorithms required to solve modeling problems in increasingly sophisticated financial markets makes this book particularly valuable as a reference for graduate students and researchers interested in the field. Furthermore, it analyses the model estimation results in the context of the market and contrasts these with contemporary research publications. It is also suitable for use as a text for graduate level courses on stochastic modeling.
|
![]() ![]() You may like...
I Shouldnt Be Telling You This
Jeff Goldblum, The Mildred Snitzer Orchestra
CD
R61
Discovery Miles 610
|