Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Industrial PID Controller Tuning presents a different view of the servo/regulator compromise that has been studied for a long time in industrial control research. Optimal tuning generally involves comparison of cost functions (e.g., a quadratic function of the error or a time-weighted absolute value of the error) but without taking advantage of available multi-objective optimization methods. The book does make use of multi-objective optimization to account for several sources of disturbance, applying them to a more realistic problem: how to select the tuning of a controller when both servo and regulator responses are important. The authors review the different deterministic multi-objective optimization methods. In order to ameliorate the consequences of the computational expense typically involved in their use-specifically the generation of multiple solutions among which the control engineer still has to choose-algorithms for two-degree-of-freedom PID control are implemented in MATLAB (R). MATLAB code and a MATLAB-compatible program are provided for download and will help readers to adapt the ideas presented in the text for use in their own systems. Further practical guidance is offered by the inclusion of several examples of common industrial processes amenable to the use of the authors' methods. Researchers interested in non-heuristic approaches to controller tuning or in decision-making after a Pareto set has been established and graduate students interested in beginning a career working with PID control and/or industrial controller tuning will find this book a valuable reference and source of ideas. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
The early 21st century has seen a renewed interest in research in the widely-adopted proportional-integral-differential (PID) form of control. PID Control in the Third Millennium provides an overview of the advances made as a result. Featuring: new approaches for controller tuning; control structures and configurations for more efficient control; practical issues in PID implementation; and non-standard approaches to PID including fractional-order, event-based, nonlinear, data-driven and predictive control; the nearly twenty chapters provide a state-of-the-art resume of PID controller theory, design and realization. Each chapter has specialist authorship and ideas clearly characterized from both academic and industrial viewpoints. PID Control in the Third Millennium is of interest to academics requiring a reference for the current state of PID-related research and a stimulus for further inquiry. Industrial practitioners and manufacturers of control systems with application problems relating to PID will find this to be a practical source of appropriate and advanced solutions.
The PID controller is the most common option in the realm of control applications and is dominant in the process control industry. Among the related analytical methods, Internal Model Control (IMC) has gained remarkable industrial acceptance due to its robust nature and good set-point responses. However, the traditional application of IMC results in poor load disturbance rejection for lag-dominant and integrating plants. This book presents an IMC-like design method which avoids this common pitfall and is devised to work well for plants of modest complexity, for which analytical PID tuning is plausible. For simplicity, the design only focuses on the closed-loop sensitivity function, including formulations for the H∞ and H2 norms. Aimed at graduate students and researchers in control engineering, this book: Considers both the robustness/performance and the servo/regulation trade-offs Presents a systematic, optimization-based approach, ultimately leading to well-motivated, model-based, and analytically derived tuning rules Shows how to tune PID controllers in a unified way, encompassing stable, integrating, and unstable processes Finds in the Weighted Sensitivity Problem the sweet spot of robust, optimal, and PID control Provides a common analytical framework that generalizes existing tuning proposals
The PID controller is the most common option in the realm of control applications and is dominant in the process control industry. Among the related analytical methods, Internal Model Control (IMC) has gained remarkable industrial acceptance due to its robust nature and good set-point responses. However, the traditional application of IMC results in poor load disturbance rejection for lag-dominant and integrating plants. This book presents an IMC-like design method which avoids this common pitfall and is devised to work well for plants of modest complexity, for which analytical PID tuning is plausible. For simplicity, the design only focuses on the closed-loop sensitivity function, including formulations for the H and H2 norms. Aimed at graduate students and researchers in control engineering, this book: Considers both the robustness/performance and the servo/regulation trade-offs Presents a systematic, optimization-based approach, ultimately leading to well-motivated, model-based, and analytically derived tuning rules Shows how to tune PID controllers in a unified way, encompassing stable, integrating, and unstable processes Finds in the Weighted Sensitivity Problem the sweet spot of robust, optimal, and PID control Provides a common analytical framework that generalizes existing tuning proposals
Industrial PID Controller Tuning presents a different view of the servo/regulator compromise that has been studied for a long time in industrial control research. Optimal tuning generally involves comparison of cost functions (e.g., a quadratic function of the error or a time-weighted absolute value of the error) but without taking advantage of available multi-objective optimization methods. The book does make use of multi-objective optimization to account for several sources of disturbance, applying them to a more realistic problem: how to select the tuning of a controller when both servo and regulator responses are important. The authors review the different deterministic multi-objective optimization methods. In order to ameliorate the consequences of the computational expense typically involved in their use-specifically the generation of multiple solutions among which the control engineer still has to choose-algorithms for two-degree-of-freedom PID control are implemented in MATLAB (R). MATLAB code and a MATLAB-compatible program are provided for download and will help readers to adapt the ideas presented in the text for use in their own systems. Further practical guidance is offered by the inclusion of several examples of common industrial processes amenable to the use of the authors' methods. Researchers interested in non-heuristic approaches to controller tuning or in decision-making after a Pareto set has been established and graduate students interested in beginning a career working with PID control and/or industrial controller tuning will find this book a valuable reference and source of ideas. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
The early 21st century has seen a renewed interest in research in the widely-adopted proportional-integral-differential (PID) form of control. PID Control in the Third Millennium provides an overview of the advances made as a result. Featuring: new approaches for controller tuning; control structures and configurations for more efficient control; practical issues in PID implementation; and non-standard approaches to PID including fractional-order, event-based, nonlinear, data-driven and predictive control; the nearly twenty chapters provide a state-of-the-art resume of PID controller theory, design and realization. Each chapter has specialist authorship and ideas clearly characterized from both academic and industrial viewpoints. PID Control in the Third Millennium is of interest to academics requiring a reference for the current state of PID-related research and a stimulus for further inquiry. Industrial practitioners and manufacturers of control systems with application problems relating to PID will find this to be a practical source of appropriate and advanced solutions."
|
You may like...
|