Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
In this book, we review many examples of multimedia item types for testing. We also outline how games can be used to test physics concepts -- discuss designing chemistry item types with interactive graphics; study how culture-specific linguistics can help inner-city kids and new immigrants learn better; suggest approaches for automatically adjusting difficulty level in interactive graphics-based questions; and propose strategies for giving partial marks for incorrect answers. We also study how to test different cognitive skills, such as music, using multimedia interfaces and also evaluate the effectiveness of our model. Methods for estimating difficulty levels of mathematical item types using Item Response Theory (IRT) will be discussed. Examples of item shells for human computer interaction and cell phones will be shown.
This volume constitutes the refereed proceedings of the 4th Pacific
Rim International Conference on Artificial Intelligence, PRICAI
'96, held in Cairns, Queensland, Australia in August 1996.
This is an open access book.Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.
The BIRS Workshop "Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets" (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of "hot topics" toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain. The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning.
This introductory textbook on Artificial Intelligence (AI) is aimed at junior/senior undergraduate and graduate level students. The book will weave a unifying theme among the core concepts that underlie the discipline of AI. While the text makes use of Prolog as its primary programming language, class testers have successfully substituted a Lisp-like pseudocode. The book encourages the student to expore, implement and experiment with a series of progressively richer logic-based representations that can capture the essential features of more and more demanding tasks and environments. The unifying theme will feature an intelligent agent acting in its own environment. This will serve to place the core concepts of AI in a coherent and cohesive framework, making it easier to teach and learn from. This approach will clarify and integrate representation and reasoning fundamentals and lead the students from simple to complex ideas with clear motivation. The authors have developed AI representation schemes and describe their use for interesting and popular applications, such as natural language vision, robotics, game playing, and expert systems. The manuscript has been class tested in a number of different courses in Canada, Japan, and Europe. Virtually every university and college has an interdisciplinary course on artificial intelligence. The enrollment in such courses is rising, as many interdisciplinary programs, such as cognitive science, psychology, linguistics, engineering, medicine, business and philosophy, recommend the course.
|
You may like...
|