Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This truly international volume includes a selection of contributions to the Second Conference of the European Science Education Research Association (Kiel, Sept. 1999). It provides a state-of-the-art examination of science education research in Europe, discusses views and visions of science education research, deals with research on scientific literacy, on students' and teachers' conceptions, on conceptual change, and on instructional media and lab work.
This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementation of representations should consider design principles for using multiple representations. Investigations regarding their effect on classroom communication as well as on the learning results in all levels of schooling and for different topics of physics are reported. The book is intended for physics educators and their students at universities and for physics teachers in schools to apply multiple representations in physics in a productive way.
Science -- and the technology derived from it -- is having a
dramatic impact on the quality of our personal lives and the
environment around us. Science will have an even greater impact on
the lives of our students. The lives of scientifically literate
students will be enriched by their understanding, appreciation, and
enjoyment of the natural world. To prosper in the near future, all
students must become scientifically literate and embrace the notion
of life-long learning in science. Without scientific literacy, it
will become impossible for students to make informed decisions
about the interrelated educational, scientific, and social issues
that will confront them in the future.
Science -- and the technology derived from it -- is having a dramatic impact on the quality of our personal lives and the environment around us. Science will have an even greater impact on the lives of our students. The lives of scientifically literate students will be enriched by their understanding, appreciation, and enjoyment of the natural world. To prosper in the near future, all students must become scientifically literate and embrace the notion of life-long learning in science. Without scientific literacy, it will become impossible for students to make informed decisions about the interrelated educational, scientific, and social issues that will confront them in the future. Intended for science teachers, teacher educators, researchers, and administrators, this volume is concerned with the innovative research that is reforming how science is learned in schools. The chapters provide overviews of current research and illustrate how the findings of this research are being applied in schools. This research-based knowledge is essential for effective science instruction. The contributors are leading authorities in science education and their chapters draw clear connections among research, theory, and classroom practice. They provide excellent examples from science classes in which their research has reformed practice. This book will help educators develop the scientific literacy of students. It bridges the gap between cutting-edge research and classroom practice to provide educators with the knowledge they need to foster students' scientific literacy.
This volume includes articles based on papers presented at the Second International Conference of the European Science Education Research Association (E.S.E.R.A.) held in Kiel, August 31 to September 4, 1999. About 300 colleagues, virtually from around the world - with a particular European focus - participated. Some 200 papers were presented. Three pages synopses of these papers were published in Proceedings of the conference (edited by Michael Komorek, Helga Behrendt, Helmut Dahncke, Reinders Duit, Wolfgang Graber and Angela Kross). They are available from the IPN homepage: http: //www.ipn.uni-kiel.de. The participants were asked to submit contributions to the present volume. It contains the invited plenary lectures and a selection of the submitted contributions based on reviews by an international board and the editors. The volume mirrors main lines of research in science education in Europe and around the world. The invited lectures provide overviews of the growth of science education research from the past to the present, including views of future developments. Major emphasis of empirical research still seems to be students' conceptions and conceptual change. About half of the contributions fall into that category. In addition, most of the remaining contributions deal with various cognitive issues of teaching and learning science. It was surprising for us that the number of studies on affective issues and gender differences was much smaller than expected."
|
You may like...
Feasts and Fasts - an Essay on the Rise…
Edward Vansittart Neale
Paperback
R629
Discovery Miles 6 290
|