![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
The three volumes VIII/1A, B, C document the state of the art of Laser Physics and Applications . Scientific trends and related technological aspects are considered by compiling results and conclusions from phenomenology, observation and experiments. Reliable data, physical fundamentals and detailed references are presented. In the recent decades the laser source matured to an universal tool common to scientific research as well as to industrial use. Today the main technical goal is the generation of optical power towards shorter wavelengths, shorter pulses, higher efficiency and higher power for applications in science and industry. Tailoring the optical energy in wavelength, space and time is a requirement for the investigation of laser-induced processes, i.e. excitation, non-linear amplification, storage of optical energy, etc. According to the actual trends in laser research and development, Vol. VIII/1 is split into three parts: Vol. VIII/1A with its two subvolumes 1A1 and 1A2 covers laser fundamentals, Vol. VIII/1B with its three subvolumes 1B1, 1B2 and 1B3 deals with laser systems and Vol. VIII/1C gives an overview on laser applications.
The Laser world consists basically of two areas, which are necessary and in many cases also sufficient for effective innovation: The right laser for the right application. For the individual application that means the determination of optimized process parameters in terms of laser power, peak power/ intensity, focus geometry and dimension, pulse length, pulse repetition rate and wavelength to name only the six most important ones. Once these parameters are identified, the corresponding Laser has to be selected on the basis of commercial availability. Obviously there is no such thing than "One Laser for all." The situation is rather comparable with electrical power, were depending on the demand of the application in terms of voltage, current and time corresponding power supplies need to be tailored, however, with the difference that in the case of the Laser the variety of parameters is even higher, thus the technology is more complex but on the other hand much more flexible in terms optimizing the source to the application.As a consequence it is suggested to generate two volumes on Lasers and Applications named "Tailored Light."
This book summarizes a five year research project, as well as subsequent results regarding high power diode laser systems and their application in materials processing. The text explores the entire chain of technology, from the semiconductor technology, through cooling mounting and assembly, beam shaping and system technology, to applications in the processing of such materials as metals and polymers. Includes theoretical models, a range of important parameters and practical tips.
The Laser world consists basically of two areas, which are necessary and in many cases also sufficient for effective innovation: The right laser for the right application. For the individual application that means the determination of optimized process parameters in terms of laser power, peak power/ intensity, focus geometry and dimension, pulse length, pulse repetition rate and wavelength to name only the six most important ones. Once these parameters are identified, the corresponding Laser has to be selected on the basis of commercial availability. Obviously there is no such thing than "One Laser for all". The situation is rather comparable with electrical power, were depending on the demand of the application in terms of voltage, current and time corresponding power supplies need to be tailored, however, with the difference that in the case of the Laser the variety of parameters is even higher, thus the technology is more complex but on the other hand much more flexible in terms optimizing the source to the application. As a consequence it is suggested to generate two volumes on Lasers and Applications named "Tailored Light".
The present book covers the application technology of lasers, focusing more on the vast range of processes than on individual applications, in order to motivate and enable future innovations. The physical basics are presented in the first half of the book. The following examination of application categories and their processes is documented by experts from their practical points of view but always refers back to the underlying physical principles. In this way, readers are free to choose their own individual level of depth in understanding this globally relevant field of innovation.
Discoveries and inventions periodically cause new technological developments within human societies. Key inventions and their accompanying economic and social changes can be seen as the main promoters of technological and structural progress. Many examples of change can be traced back to key inventions. At the end of the last century, one of the major lines of technological development was the implementation of electricity, the introduction of electric current. Inno vations were generated both by applying the "low quality" thermal and energy transmission properties, as well as by studying "high quality" characteristics like signal processing and electromagnetic wave propagation. In the field of signal processing, particular devices like the thermionic valve, the transistor and the (micro) chip deserve mention. Regarding energy generation, distribution and consumption, huge investments were made in coal and nuclear power plants, as well as in consumer and industrial electric appliances. Which innovations can be expected to improve or replace some of the applications (products, processes) of electricity? Thinking of an important technology invented about three decades ago - the laser - coherent light plays the key role in the process ("light amplification by stimulated emission of radiation"). Thus the new term technologies of light can be used for such innovations. Extending the definition, "technologies of light" or "photonics" can be defined as any methods, processes or products which make use of the spectrum of light, and any systems whose function is to study, measure, transform or transmit by means of light."
This book summarizes a five year research project, as well as subsequent results regarding high power diode laser systems and their application in materials processing. The text explores the entire chain of technology, from the semiconductor technology, through cooling mounting and assembly, beam shaping and system technology, to applications in the processing of such materials as metals and polymers. Includes theoretical models, a range of important parameters and practical tips.
|
![]() ![]() You may like...
|