Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 30 matches in All Departments
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Chapters in this volume include: Similarity-based Analysis of Population Dynamics in GP Performing Symbolic Regression Hybrid Structural and Behavioral Diversity Methods in GP Multi-Population Competitive Coevolution for Anticipation of Tax Evasion Evolving Artificial General Intelligence for Video Game Controllers A Detailed Analysis of a PushGP Run Linear Genomes for Structured Programs Neutrality, Robustness, and Evolvability in GP Local Search in GP PRETSL: Distributed Probabilistic Rule Evolution for Time-Series Classification Relational Structure in Program Synthesis Problems with Analogical Reasoning An Evolutionary Algorithm for Big Data Multi-Class Classification Problems A Generic Framework for Building Dispersion Operators in the Semantic Space Assisting Asset Model Development with Evolutionary Augmentation Building Blocks of Machine Learning Pipelines for Initialization of a Data Science Automation Tool Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud - communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions - model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Genetic Programming Theory and Practice IV was developed from the fourth workshop at the University of Michigan's Center for the Study of Complex Systems to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). The text provides a cohesive view of the issues facing both practitioners and theoreticians, and examines the synergy between GP theory and application. The foremost international researchers and practitioners in the GP arena contributed to the volume, exploring application areas including chemical process control, circuit design, financial data mining and bioinformatics, to name just a few. This volume is the result of an extensive dialog between GP theoreticians and practitioners, and is a unique and indispensable tool for both academics and industry professionals involved in GP, evolutionary computation, machine learning and artificial intelligence.
Genetic Programming Theory and Practice explores the emerging
interaction between theory and practice in the cutting-edge,
machine learning method of Genetic Programming (GP). The material
contained in this contributed volume was developed from a workshop
at the University of Michigan's Center for the Study of Complex
Systems where an international group of genetic programming
theorists and practitioners met to examine how GP theory informs
practice and how GP practice impacts GP theory. The contributions
cover the full spectrum of this relationship and are written by
leading GP theorists from major universities, as well as active
practitioners from leading industries and businesses. Chapters
include such topics as John Koza's development of human-competitive
electronic circuit designs; David Goldberg's application of
"competent GA" methodology to GP; Jason Daida's discovery of a new
set of factors underlying the dynamics of GP starting from applied
research; and Stephen Freeland's essay on the lessons of biology
for GP and the potential impact of GP on evolutionary theory.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud - communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions - model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
The contributions in this volume are written by the foremost international researchers and practitioners in the GP arena. They examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. Topics include: FINCH: A System for Evolving Java, Practical Autoconstructive Evolution, The Rubik Cube and GP Temporal Sequence Learning, Ensemble classifiers: AdaBoost and Orthogonal Evolution of Teams, Self-modifying Cartesian GP, Abstract Expression Grammar Symbolic Regression, Age-Fitness Pareto Optimization, Scalable Symbolic Regression by Continuous Evolution, Symbolic Density Models, GP Transforms in Linear Regression Situations, Protein Interactions in a Computational Evolution System, Composition of Music and Financial Strategies via GP, and Evolutionary Art Using Summed Multi-Objective Ranks. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results in GP .
The work described in this book was first presented at the Second Workshop on Genetic Programming, Theory and Practice, organized by the Center for the Study of Complex Systems at the University of Michigan, Ann Arbor, 13-15 May 2004. The goal of this workshop series is to promote the exchange of research results and ideas between those who focus on Genetic Programming (GP) theory and those who focus on the application of GP to various re- world problems. In order to facilitate these interactions, the number of talks and participants was small and the time for discussion was large. Further, participants were asked to review each other's chapters before the workshop. Those reviewer comments, as well as discussion at the workshop, are reflected in the chapters presented in this book. Additional information about the workshop, addendums to chapters, and a site for continuing discussions by participants and by others can be found at http: //cscs.umich.edu:8000/GPTP-20041. We thank all the workshop participants for making the workshop an exciting and productive three days. In particular we thank all the authors, without whose hard work and creative talents, neither the workshop nor the book would be possible. We also thank our keynote speakers Lawrence ("Dave") Davis of NuTech Solutions, Inc., Jordan Pollack of Brandeis University, and Richard Lenski of Michigan State University, who delivered three thought-provoking speeches that inspired a great deal of discussion among the participants.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: multi-objective genetic programming, learning heuristics, Kaizen programming, Evolution of Everything (EvE), lexicase selection, behavioral program synthesis, symbolic regression with noisy training data, graph databases, and multidimensional clustering. It also covers several chapters on best practices and lesson learned from hands-on experience. Additional application areas include financial operations, genetic analysis, and predicting product choice. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: exploiting subprograms in genetic programming, schema frequencies in GP, Accessible AI, GP for Big Data, lexicase selection, symbolic regression techniques, co-evolution of GP and LCS, and applying ecological principles to GP. It also covers several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Genetic Programming Theory and Practice VII presents the results of the annual Genetic Programming Theory and Practice Workshop, contributed by the foremost international researchers and practitioners in the GP arena. Contributions examine the similarities and differences between theoretical and empirical results on real-world problems, and explore the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. Application areas include chemical process control, circuit design, financial data mining and bio-informatics, to name a few. About this book: Discusses the hurdles encountered when solving large-scale, cutting-edge applications, provides in-depth presentations of the latest and most significant applications of GP and the most recent theoretical results with direct applicability to state-of-the-art problems. Genetic Programming Theory and Practice VII is suitable for researchers, practitioners and students of Genetic Programming, including industry technical staffs, technical consultants and business entrepreneurs.
Genetic Programming Theory and Practice V was developed from the fifth workshop at the University of Michigan 's Center for the Study of Complex Systems. It aims to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). This volume is a unique and indispensable tool for academics, researchers and industry professionals involved in GP, evolutionary computation, machine learning and artificial intelligence.
This book is a collection of essays exploring adaptive systems from
many perspectives, ranging from computational applications to
models of adaptation in living and social systems. The essays on
computation discuss history, theory, applications, and possible
threats of adaptive and evolving computations systems. The modeling
chapters cover topics such as evolution in microbial populations,
the evolution of cooperation, and how ideas about evolution relate
to economics.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: gene expression regulation, novel genetic models for glaucoma, inheritable epigenetics, combinators in genetic programming, sequential symbolic regression, system dynamics, sliding window symbolic regression, large feature problems, alignment in the error space, HUMIE winners, Boolean multiplexer function, and highly distributed genetic programming systems. Application areas include chemical process control, circuit design, financial data mining and bioinformatics. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Genetic Programming Theory and Practice III provides both researchers and industry professionals with the most recent developments in GP theory and practice by exploring the emerging interaction between theory and practice in the cutting-edge, machine learning method of Genetic Programming (GP). The contributions developed from a third workshop at the University of Michigan's Center for the Study of Complex Systems, where leading international genetic programming theorists from major universities and active practitioners from leading industries and businesses meet to examine and challenge how GP theory informs practice and how GP practice impacts GP theory. Applications are from a wide range of domains, including chemical process control, informatics, and circuit design, to name a few.
Genetic Programming Theory and Practice VI was developed from the sixth workshop at the University of Michigan s Center for the Study of Complex Systems to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). Contributions from the foremost international researchers and practitioners in the GP arena examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. These contributions address several significant interdependent themes which emerged from this year s workshop, including: (1) Making efficient and effective use of test data. (2) Sustaining the long-term evolvability of our GP systems. (3) Exploiting discovered subsolutions for reuse. (4) Increasing the role of a Domain Expert."
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics include: modularity and scalability; evolvability; human-competitive results; the need for important high-impact GP-solvable problems;; the risks of search stagnation and of cutting off paths to solutions; the need for novelty; empowering GP search with expert knowledge; In addition, GP symbolic regression is thoroughly discussed, addressing such topics as guaranteed reproducibility of SR; validating SR results, measuring and controlling genotypic complexity; controlling phenotypic complexity; identifying, monitoring, and avoiding over-fitting; finding a comprehensive collection of SR benchmarks, comparing SR to machine learning. This text is for all GP explorers. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Chapters in this volume include: Similarity-based Analysis of Population Dynamics in GP Performing Symbolic Regression Hybrid Structural and Behavioral Diversity Methods in GP Multi-Population Competitive Coevolution for Anticipation of Tax Evasion Evolving Artificial General Intelligence for Video Game Controllers A Detailed Analysis of a PushGP Run Linear Genomes for Structured Programs Neutrality, Robustness, and Evolvability in GP Local Search in GP PRETSL: Distributed Probabilistic Rule Evolution for Time-Series Classification Relational Structure in Program Synthesis Problems with Analogical Reasoning An Evolutionary Algorithm for Big Data Multi-Class Classification Problems A Generic Framework for Building Dispersion Operators in the Semantic Space Assisting Asset Model Development with Evolutionary Augmentation Building Blocks of Machine Learning Pipelines for Initialization of a Data Science Automation Tool Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: exploiting subprograms in genetic programming, schema frequencies in GP, Accessible AI, GP for Big Data, lexicase selection, symbolic regression techniques, co-evolution of GP and LCS, and applying ecological principles to GP. It also covers several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: multi-objective genetic programming, learning heuristics, Kaizen programming, Evolution of Everything (EvE), lexicase selection, behavioral program synthesis, symbolic regression with noisy training data, graph databases, and multidimensional clustering. It also covers several chapters on best practices and lesson learned from hands-on experience. Additional application areas include financial operations, genetic analysis, and predicting product choice. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: gene expression regulation, novel genetic models for glaucoma, inheritable epigenetics, combinators in genetic programming, sequential symbolic regression, system dynamics, sliding window symbolic regression, large feature problems, alignment in the error space, HUMIE winners, Boolean multiplexer function, and highly distributed genetic programming systems. Application areas include chemical process control, circuit design, financial data mining and bioinformatics. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud - communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions - model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud - communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions - model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics include: modularity and scalability; evolvability; human-competitive results; the need for important high-impact GP-solvable problems;; the risks of search stagnation and of cutting off paths to solutions; the need for novelty; empowering GP search with expert knowledge; In addition, GP symbolic regression is thoroughly discussed, addressing such topics as guaranteed reproducibility of SR; validating SR results, measuring and controlling genotypic complexity; controlling phenotypic complexity; identifying, monitoring, and avoiding over-fitting; finding a comprehensive collection of SR benchmarks, comparing SR to machine learning. This text is for all GP explorers. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Genetic Programming Theory and Practice explores the emerging interaction between theory and practice in the cutting-edge, machine learning method of Genetic Programming (GP). The material contained in this contributed volume was developed from a workshop at the University of Michigan's Center for the Study of Complex Systems where an international group of genetic programming theorists and practitioners met to examine how GP theory informs practice and how GP practice impacts GP theory. The contributions cover the full spectrum of this relationship and are written by leading GP theorists from major universities, as well as active practitioners from leading industries and businesses. Chapters include such topics as John Koza's development of human-competitive electronic circuit designs; David Goldberg's application of "competent GA" methodology to GP; Jason Daida's discovery of a new set of factors underlying the dynamics of GP starting from applied research; and Stephen Freeland's essay on the lessons of biology for GP and the potential impact of GP on evolutionary theory.
Genetic Programming Theory and Practice VII presents the results of the annual Genetic Programming Theory and Practice Workshop, contributed by the foremost international researchers and practitioners in the GP arena. Contributions examine the similarities and differences between theoretical and empirical results on real-world problems, and explore the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. Application areas include chemical process control, circuit design, financial data mining and bio-informatics, to name a few. About this book: Discusses the hurdles encountered when solving large-scale, cutting-edge applications, provides in-depth presentations of the latest and most significant applications of GP and the most recent theoretical results with direct applicability to state-of-the-art problems. Genetic Programming Theory and Practice VII is suitable for researchers, practitioners and students of Genetic Programming, including industry technical staffs, technical consultants and business entrepreneurs. |
You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Wits University At 100 - From Excavation…
Wits Communications
Paperback
|