Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Professor Judea Pearl won the 2011 Turing Award "for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning." This book contains the original articles that led to the award, as well as other seminal works, divided into four parts: heuristic search, probabilistic reasoning, causality, first period (1988-2001), and causality, recent period (2002-2020). Each of these parts starts with an introduction written by Judea Pearl. The volume also contains original, contributed articles by leading researchers that analyze, extend, or assess the influence of Pearl's work in different fields: from AI, Machine Learning, and Statistics to Cognitive Science, Philosophy, and the Social Sciences. The first part of the volume includes a biography, a transcript of his Turing Award Lecture, two interviews, and a selected bibliography annotated by him.
As computer science enters the new millennium, methods and languages for reasoning with constraints have come to play an important role, with both t- oretical advances and practical applications. Constraints have emerged as the basis of a representational and computational paradigm that draws from many disciplinesandcanbebroughttobearonmanyproblemdomains, includingar- ?cial intelligence, databases, and combinatorial optimization. The conference is concerned with all aspects of computing with constraints including algorithms, applications, environments, languages, models and systems. The Sixth InternationalConference on Principles and Practiceof Constraint Programming (CP2000) continues to provide an international forum for p- senting and discussing state-of-the-art research and applications involving c- straints.Afterafewannualworkshops, CP'95tookplaceinCassis, France;CP'96 in Cambridge, USA; CP'97 in Schloss Hagenberg, Austria; CP'98 in Pisa, Italy and CP'99 in Alexandria, USA. This year the conference is held in Singapore, from 18 through 21 September 2000. This volume comprises the papers that were accepted for presentation at CP2000.From the 101 papersthat were submitted, 31 papers wereaccepted for presentation in the plenary session and 13 papers were selected as posters and have a short version (?ve pages) in this volume. All papers were subjected to rigorous review three program committee members (or their designated revi- ers) refereed each paper. Decisions were reached following discussions among reviewers and, in some instances, by e-mail consultation of the entire program committee.Ibelievethereaderwill?ndthesearticlestobeofthehighestquality, representing a signi?cant contribution to the ?eld.
Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. This book provides comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. The new edition includes the notion of influence diagrams, which focus on sequential decision making under uncertainty. We believe the principles outlined in the book would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.
Constraint satisfaction is a simple but powerful tool. Constraints
identify the impossible and reduce the realm of possibilities to
effectively focus on the possible, allowing for a natural
declarative formulation of what must be satisfied, without
expressing how. The field of constraint reasoning has matured over
the last three decades with contributions from a diverse community
of researchers in artificial intelligence, databases and
programming languages, operations research, management science, and
applied mathematics. Today, constraint problems are used to model
cognitive tasks in vision, language comprehension, default
reasoning, diagnosis, scheduling, temporal and spatial reasoning.
Professor Judea Pearl won the 2011 Turing Award "for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning." This book contains the original articles that led to the award, as well as other seminal works, divided into four parts: heuristic search, probabilistic reasoning, causality, first period (1988-2001), and causality, recent period (2002-2020). Each of these parts starts with an introduction written by Judea Pearl. The volume also contains original, contributed articles by leading researchers that analyze, extend, or assess the influence of Pearl's work in different fields: from AI, Machine Learning, and Statistics to Cognitive Science, Philosophy, and the Social Sciences. The first part of the volume includes a biography, a transcript of his Turing Award Lecture, two interviews, and a selected bibliography annotated by him.
The field of Artificial Intelligence has changed a great deal since the 80s, and arguably no one has played a larger role in that change than Judea Pearl. Judea Pearl's work made probability the prevailing language of modern AI and, perhaps more significantly, it placed the elaboration of crisp and meaningful models, and of effective computational mechanisms, at the center of AI research. This book is a collection of articles in honor of Judea Pearl, written by close colleagues and former students. Its three main parts, heuristics, probabilistic reasoning, and causality, correspond to the titles of the three ground-breaking books authored by Judea, and are followed by a section of short reminiscences. In this volume, leading authors look at the state of the art in the fields of heuristic, probabilistic, and causal reasoning, in light of Judea's seminal contributors. The authors list include Blai Bonet, Eric Hansen, Robert Holte, Jonathan Schaeffer, Ariel Felner, Richard Korf, Austin Parker, Dana Nau, V. S. Subrahmanian, Hector Geffner, Ira Pohl, Adnan Darwiche, Thomas Dean, Rina Dechter, Bozhena Bidyuk, Robert Matescu, Emma Rollon, Michael I. Jordan, Michael Kearns, Daphne Koller, Brian Milch, Stuart Russell, Azaria Paz, David Poole, Ingrid Zukerman, Carlos Brito, Philip Dawid, Felix Elwert, Christopher Winship, Michael Gelfond, Nelson Rushton, Moises Goldszmidt, Sander Greenland, Joseph Y. Halpern, Christopher Hitchcock, David Heckerman, Ross Shachter, Vladimir Lifschitz, Thomas Richardson, James Robins, Yoav Shoham, Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman, Wolfgang Spohn, Jian Tian, Ilya Shpitser, Nils Nilsson, Edward T. Purcell, and David Spiegelhalter.
|
You may like...
|