![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
This volume contains 21 research and survey papers on recent developments in the field of diophantine approximation, which are based on lectures given at a conference at the Erwin Schrodinger-Institute (Vienna, 2003). The articles are either in the spirit of more classical diophantine analysis or of a geometric or combinatorial flavor. Several articles deal with estimates for the number of solutions of diophantine equations as well as with congruences and polynomials.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This volume contains 21 research and survey papers on recent developments in the field of diophantine approximation, which are based on lectures given at a conference at the Erwin Schr dinger-Institute (Vienna, 2003). The articles are either in the spirit of more classical diophantine analysis or of a geometric or combinatorial flavor. Several articles deal with estimates for the number of solutions of diophantine equations as well as with congruences and polynomials.
The main purpose of this book is to give an overview of the developments during the last 20 years in the theory of uniformly distributed sequences. The authors focus on various aspects such as special sequences, metric theory, geometric concepts of discrepancy, irregularities of distribution, continuous uniform distribution and uniform distribution in discrete spaces. Specific applications are presented in detail: numerical integration, spherical designs, random number generation and mathematical finance. Furthermore over 1000 references are collected and discussed. While written in the style of a research monograph, the book is readable with basic knowledge in analysis, number theory and measure theory.
|
![]() ![]() You may like...
|