Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
Bioelectricity, 3E will enhance on the developments since the successful last edition. This new edition of the classic introductory text to bioelectricity (electrophysiology) aims at biomedical engineering students and is authored by two eminent biomedical engineering professors at Duke University. Its 12 chapters cover topics in bioelectricity: electrical properties of the cell membrane; action potentials; cable theory; neuromuscular junction; extracellular fields; cardiac electrophysiology. The authors discuss many topics that are central to biophysics and bioengineering and the quantitative methods employed. In addition, this classic text will be complemented by a Bioelectricity Solutions Manual, sure to aid the speed and assimilation of the Teaching Text material to the new biomedical engineering student.
This text is an introduction to electrophysiology, following a quantitative approach. The first chapter summarizes much of the mathematics required in the following chapters. The second chapter presents a very concise overview of the general principles of electrical fields and current flow, mostly es tablished in physical science and engineering, but also applicable to biolog ical environments. The following five chapters are the core material of this text. They include descriptions of how voltages come to exist across membranes and how these are described using the Nernst and Goldman equations (Chapter 3), an examination of the time course of changes in membrane voltages that produce action potentials (Chapter 4), propagation of action potentials down fibers (Chapter 5), the response of fibers to artificial stimuli such as those used in pacemakers (Chapter 6), and the voltages and currents produced by these active processes in the surrounding extracellular space (Chapter 7). The subsequent chapters present more detailed material about the application of these principles to the study of cardiac and neural electrophysiology, and include a chapter on recent developments in mem brane biophysics. The study of electrophysiology has progressed rapidly because of the precise, delicate, and ingenious experimental studies of many investigators. The field has also made great strides by unifying the numerous experimental observations through the development of increasingly accurate theoretical concepts and mathematical descriptions. The application of these funda mental principles has in turn formed a basis for the solution of many different electrophysiological problems."
The field of electrocardiography is at a cross roads. We have reached an era in cardiovascular about the electrical state of the heart not likely to be available in any other imaging techniques. medicine where it is claimed that "imaging" is king. The innovative and useful ultrasound And, in the body surface potential map, we have an imaging technique that goes beyond struc techniques continue to develop, and, in the wings lie magnetic resonance, position emission, ture-the only other being, perhaps, magnetic resonance, which has the potential for metabolic and, perhaps, other modalities. Consequently, there are those who state that, other than the imaging. Clinical electrocardiography is impor problems related to cardiac rhythm, electro tant not only as a diagnostic tool for it can truly cardiography as a discipline is passe. In addi give insight into the effect of the disease in question on the heart muscle itself. tion, although there is continued superb work in the basic science related to arrhythmias, only Therefore, it seemed now to be appropriate to a handful of scientists are interested in the bring together leaders in the various fields of myocardial source per se. And few scientists are electrocardiography with the only constraint interested in what happens to that myocardial being a concentration on newer concepts and electrical source on its trip from the endo ideas.
A volume in the new Principles and Applications in Engineering series, Tissue Engineering provides an overview of the major physiologic systems of current interest to biomedical engineers: cardiovascular, endocrine, nervous, visual, auditory, gastrointestinal, and respiratory. It contains useful definitions, tables of basic physiologic data, and an introduction to the literature. Then, the book reviews the status of tissue engineering of specific organs, including bone marrow, skeletal muscle, and cartilage. Readers will acquire a good understanding of the engineering and cell biological fundamentals of tissue engineering and will develop ideas for further development of this emerging and important field.
Comprised of chapters carefully selected from CRC's best-selling engineering handbooks, volumes in the Principles and Applications in Engineering series provide convenient, economical references sharply focused on particular engineering topics and subspecialties. Culled from the Biomedical Engineering Handbook, Biomedical Imaging provides an overview of the main medical imaging devices and highlights emerging systems. With applications ranging from imaging the whole body to replicating cellular components, the imaging modalities discussed include x-ray systems, computed tomographic systems, magnetic resonance imaging, nuclear medicine, ultrasound, MR microscopy, virtual reality, and more.
This is the new edition of the classic introductory text to electrophysiology. It covers many topics that are central to the field including the electrical properties of the cell membrane and cardiac electrophysiology. Organized as a textbook for the student needing to acquire the core competencies, this book meets the demands of advanced undergraduate or graduate coursework in biomedical engineering and biophysics. New features include extra, detailed illustrations. The book is authored by two eminent biomedical engineering professors at Duke University who discuss many topics that are central to biophysics and bioengineering and the quantitative methods employed.
This text is an introduction to electrophysiology, following a quantitative approach. The first chapter summarizes much of the mathematics required in the following chapters. The second chapter presents a very concise overview of the general principles of electrical fields and current flow, mostly es tablished in physical science and engineering, but also applicable to biolog ical environments. The following five chapters are the core material of this text. They include descriptions of how voltages come to exist across membranes and how these are described using the Nernst and Goldman equations (Chapter 3), an examination of the time course of changes in membrane voltages that produce action potentials (Chapter 4), propagation of action potentials down fibers (Chapter 5), the response of fibers to artificial stimuli such as those used in pacemakers (Chapter 6), and the voltages and currents produced by these active processes in the surrounding extracellular space (Chapter 7). The subsequent chapters present more detailed material about the application of these principles to the study of cardiac and neural electrophysiology, and include a chapter on recent developments in mem brane biophysics. The study of electrophysiology has progressed rapidly because of the precise, delicate, and ingenious experimental studies of many investigators. The field has also made great strides by unifying the numerous experimental observations through the development of increasingly accurate theoretical concepts and mathematical descriptions. The application of these funda mental principles has in turn formed a basis for the solution of many different electrophysiological problems."
The field of electrocardiography is at a cross roads. We have reached an era in cardiovascular about the electrical state of the heart not likely to be available in any other imaging techniques. medicine where it is claimed that "imaging" is king. The innovative and useful ultrasound And, in the body surface potential map, we have an imaging technique that goes beyond struc techniques continue to develop, and, in the wings lie magnetic resonance, position emission, ture-the only other being, perhaps, magnetic resonance, which has the potential for metabolic and, perhaps, other modalities. Consequently, there are those who state that, other than the imaging. Clinical electrocardiography is impor problems related to cardiac rhythm, electro tant not only as a diagnostic tool for it can truly cardiography as a discipline is passe. In addi give insight into the effect of the disease in question on the heart muscle itself. tion, although there is continued superb work in the basic science related to arrhythmias, only Therefore, it seemed now to be appropriate to a handful of scientists are interested in the bring together leaders in the various fields of myocardial source per se. And few scientists are electrocardiography with the only constraint interested in what happens to that myocardial being a concentration on newer concepts and electrical source on its trip from the endo ideas."
This book provides a general view of bioelectromagnetism and describes it as an independent discipline. It begins with an historical account of the many innovations and innovators on whose work the field rests. This is accompanied by a discussion of both the theories and experiments which were contributed to the development of the field. The physiological origin of bioelectric and biomagnetic signal is discussed in detail. The sensitivity in a given measurement situation, the energy distribution in stimulation with the same electrodes, and the measurement of impedance are related and described by the electrode lead field. It is shown that, based on the reciprocity theorem, these are identical and further, that these procedures apply equally well for biomagnetic considerations. The difference between corresponding bioelectric and biomagnetic methods is discussed. The book shows, that all subfields of bioelectromagnetism obey the same basic laws and they are closely tied together through the principle of reciprocity. Thus the book helps the reader to understand the properties of existing bioelectric and biomagnetic measurements and stimulation methods and to design new systems. The book includes about 300 carefully drawn illustrations and 500 references. It can be used as a textbook for third or fourth year university students and as a source of reference.
A volume in the new Principles and Applications in Engineering series, Tissue Engineering provides an overview of the major physiologic systems of current interest to biomedical engineers: cardiovascular, endocrine, nervous, visual, auditory, gastrointestinal, and respiratory. It contains useful definitions, tables of basic physiologic data, and an introduction to the literature. Then, the book reviews the status of tissue engineering of specific organs, including bone marrow, skeletal muscle, and cartilage. Readers will acquire a good understanding of the engineering and cell biological fundamentals of tissue engineering and will develop ideas for further development of this emerging and important field.
|
You may like...
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor
Paperback
|