![]() |
![]() |
Your cart is empty |
||
Showing 1 - 10 of 10 matches in All Departments
Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be `modern' and `classical', is universally useful whereas the second part leads the reader towards a very active and specialized field of research, with possibly broad generalizations.
Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes. Based on a course given by the author to large audiences at Paris VII University for many years, the exposition proceeds somewhat nonlinearly, blending rigorous mathematics skilfully with didactical and historical considerations. It sets out to illustrate the variety of possible approaches to the main results, in order to initiate the reader to methods, the underlying reasoning, and fundamental ideas. It is suitable for both teaching and self-study. In his familiar, personal style, the author emphasizes ideas over calculations and, avoiding the condensed style frequently found in textbooks, explains these ideas without parsimony of words. The French edition in four volumes, published from 1998, has met with resounding success: the first two volumes are now available in English.
Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes. Based on a course given by the author to large audiences at Paris VII University for many years, the exposition proceeds somewhat nonlinearly, blending rigorous mathematics skilfully with didactical and historical considerations. It sets out to illustrate the variety of possible approaches to the main results, in order to initiate the reader to methods, the underlying reasoning, and fundamental ideas. It is suitable for both teaching and self-study. In his familiar, personal style, the author emphasizes ideas over calculations and, avoiding the condensed style frequently found in textbooks, explains these ideas without parsimony of words. The French edition in four volumes, published from 1998, has met with resounding success: the first two volumes are now available in English.
This textbook covers the general theory of Lie groups. By first considering the case of linear groups (following von Neumann's method) before proceeding to the general case, the reader is naturally introduced to Lie theory. Written by a master of the subject and influential member of the Bourbaki group, the French edition of this textbook has been used by several generations of students. This translation preserves the distinctive style and lively exposition of the original. Requiring only basics of topology and algebra, this book offers an engaging introduction to Lie groups for graduate students and a valuable resource for researchers.
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R).
Ce 4A]me volume de l'ouvrage Analyse mathA(c)matique initiera le lecteur A l'analyse fonctionnelle (intA(c)gration, espaces de Hilbert, analyse harmonique en thA(c)orie des groupes) et aux mA(c)thodes de la thA(c)orie des fonctions modulaires (sA(c)ries L et theta, fonctions elliptiques, usage de l'algA]bre de Lie de SL2). Tout comme pour les volumes 1 A 3, on reconnaA(R)tra ici encore, le style inimitable de l'auteur et pas seulement par son refus de l'ecriture condensA(c)e en usage dans de nombreux manuels. Mariant judicieusement les mathA(c)matiques dites 'modernes' et' classiques', la premiA]re partie (IntA(c)gration) est d'utilitA(c) universelle tandis que la seconde oriente le lecteur vers un domaine de recherche spA(c)cialisA(c) et trA]s actif, avec de vastes gA(c)nA(c)ralisations possibles.
Les deux premiers volumes sont consacrA(c)s aux fonctions dans R ou
C, y compris la thA(c)orie A(c)lA(c)mentaire des sA(c)ries et
intA(c)grales de Fourier et une partie de celle des fonctions
holomorphes. L'exposA(c) non strictement linA(c)aire, combine
indications historiques et raisonnements rigoureux. Il montre la
diversitA(c) des voies d'accA]s aux principaux rA(c)sultats afin de
familiariser le lecteur avec les mA(c)thodes de raisonnement et
idA(c)es fondamentales plutAt qu'avec les techniques de calcul,
point de vue utile aussi aux personnes travaillant seules.
Ce vol. III expose la thA(c)orie classique de Cauchy dans un esprit orientA(c) bien davantage vers ses innombrables utilisations que vers une thA(c)orie plus ou moins complA]te des fonctions analytiques. On montre ensuite comment les intA(c)grales curvilignes A la Cauchy se gA(c)nA(c)ralisent A un nombre quelconque de variables rA(c)elles (formes diffA(c)rentielles, formules de type Stokes). Les bases de la thA(c)orie des variA(c)tA(c)s sont ensuite exposA(c)es, principalement pour fournir au lecteur le langage "canonique" et quelques thA(c)orA]mes importants (changement de variables dans les intA(c)grales, A(c)quations diffA(c)rentielles). Un dernier chapitre montre comment on peut utiliser ces thA(c)ories pour construire la surface de Riemann compacte d'une fonction algA(c)brique, sujet rarement traitA(c) dans la littA(c)rature non spA(c)cialisA(c)e bien que n'A(c)xigeant que des techniques A(c)lA(c)mentaires. Un volume IV exposera, outre, l'intA(c)grale de Lebesgue, un bloc de mathA(c)matiques spA(c)cialisA(c)es vers lequel convergera tout le contenu des volumes prA(c)cA(c)dents: sA(c)ries et produits infinis de Jacobi, Riemann, Dedekind, fonctions elliptiques, thA(c)orie classique des fonctions modulaires et la version moderne utilisant la structure de groupe de Lie de SL(2, R).
Les deux premiers volumes de cet ouvrage sont consacrA(c)s aux
fonctions dans R ou C, y compris la thA(c)orie A(c)lA(c)mentaire
des sA(c)ries et intA(c)grales de Fourier et une partie de celle
des fonctions holomorphes. L'exposA(c), non strictement
linA(c)aire, combine indications historiques et raisonnements
rigoureux. Il montre la diversitA(c) des voies d'accA]s aux
principaux rA(c)sultats afin de familiariser le lecteur avec les
mA(c)thodes de raisonnement et idA(c)es fondamentales plutAt
qu'avec les techniques de calcul, point de vue utile aussi aux
personnes travaillant seules.
|
![]() ![]() You may like...
|